Algebraic domain decomposition solvers: massively parallel scalability study and real life applications

Azzam Haidar (CERFACS) joint work with Luc Giraud (N7-IRIT)

PhD Summary June 23th, 2008, Toulouse

Outline

- Motivations
- Background
- Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- 6 Experiments on large 3D structural mechanics applications
- Experiments on large 3D seismic modelling applications
- Perspectives

Outline

- Motivations
- 2 Background
- 3 Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- 6 Experiments on large 3D structural mechanics applications
- Experiments on large 3D seismic modelling applications
- 8 Perspectives

Motivations

$$Ax = b$$

Solution of very Large/Huge *ill*-conditioned sparse linear systems Ax = b

- Such problems can require thousands of CPU-hours and many Gigabytes of memory
- Direct solvers:
 - Robust and usually do not fail
 - Memory and computational costs grow nonlinearly
- Iterative solvers:
 - Reduce memory requirements
 - They may fail to converge
 - Typically implemented with preconditioning to accelerate convergence

In an effort to reduce these requirements, a parallel mechanism for combining advantages of those solvers is needed

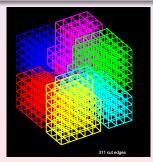
Goal

Develop robust scalable parallel hybrid direct/iterative linear solvers

- Exploit the efficiency and robustness of the sparse direct solvers
- Develop robust parallel preconditioners for iterative solvers
- Take advantage of the natural scalable parallel implementation of iterative solvers

Domain Decomposition (DD)

- Natural approach for PDE's
- Extend to general sparse matrices
- Partition the problem into subdomains, subgraphs
- Use a direct solver on the subdomains
- Robust preconditioned iterative solver

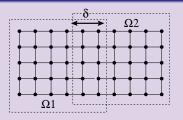


Outline

- Motivations
- 2 Background
- Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- 6 Experiments on large 3D structural mechanics applications
- Experiments on large 3D seismic modelling applications
- 8 Perspectives

Overlapping Domain Decomposition

Classical Additive Schwarz preconditioners



- Goal: solve linear system Ax = b
- Use iterative method
- Apply the preconditioner at each step
- The convergence rate deteriorates as the number of subdomains increases

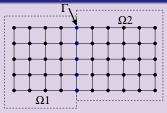
$$\mathcal{A} = \left(\begin{array}{ccc} \mathcal{A}_{1,1} & \mathcal{A}_{1,\delta} & \\ \mathcal{A}_{\delta,1} & \mathcal{A}_{\delta,\delta} & \mathcal{A}_{\delta,2} \\ & \mathcal{A}_{\delta,2} & \mathcal{A}_{2,2} \end{array} \right) \Longrightarrow \mathcal{M}_{\mathcal{AS}}^{\delta} = \left(\begin{array}{ccc} \boxed{\begin{array}{c|ccc} \mathcal{A}_{1,1} & \mathcal{A}_{1,\delta} & ^{-1} \\ \mathcal{A}_{\delta,1} & \mathcal{A}_{\delta,\delta} & \mathcal{A}_{\delta,2} \\ \hline \mathcal{A}_{\delta,2} & \mathcal{A}_{2,2} \end{array} \right)^{-1} \end{array} \right)$$

Classical Additive Schwarz preconditioners N subdomains case

$$\mathcal{M}_{AS}^{\delta} = \sum_{i=1}^{N} \left(\mathcal{R}_{i}^{\delta} \right)^{T} \left(\mathcal{A}_{i}^{\delta} \right)^{-1} \mathcal{R}_{i}^{\delta}$$

Non-overlapping Domain Decomposition

Schur complement reduced system



- Goal: solve linear system Ax = b
- Apply partially Gaussian elimination
- Solve the reduced system $Sx_{\Gamma} = f$
- Then solve $A_i x_i = b_i A_{i,\Gamma} x_{\Gamma}$

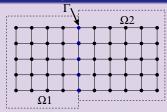
$$\mathcal{A}$$
 $\qquad \qquad \mathsf{x} = \mathsf{b} \implies$

$$\left(\begin{array}{ccc} \mathcal{A}_{1,1} & 0 & \mathcal{A}_{1,\Gamma} \\ 0 & \mathcal{A}_{2,2} & \mathcal{A}_{2,\Gamma} \\ \mathcal{A}_{\Gamma,1} & \mathcal{A}_{\Gamma,2} & \mathcal{A}_{\Gamma,\Gamma} \end{array}\right) \begin{pmatrix} x_1 \\ x_2 \\ x_\Gamma \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_\Gamma \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} \mathcal{I} & 0 & 0 \\ 0 & \mathcal{I} & 0 \\ \mathcal{A}_{\Gamma,1} \mathcal{A}_{1,1}^{-1} & \mathcal{A}_{\Gamma,2} \mathcal{A}_{2,2}^{-1} & \mathcal{I} \end{pmatrix} \begin{pmatrix} \mathcal{A}_{1,1} & 0 & \mathcal{A}_{1,\Gamma} \\ 0 & \mathcal{A}_{2,2} & \mathcal{A}_{2,\Gamma} \\ 0 & 0 & \mathcal{A}_{\Gamma,\Gamma} - \sum_{i=1}^{2} \mathcal{A}_{\Gamma,i} \mathcal{A}_{i,i}^{-1} \mathcal{A}_{i,\Gamma} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\Gamma} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_{\Gamma} \end{pmatrix}$$

Non-overlapping Domain Decomposition

Schur complement reduced system



- Goal: solve linear system Ax = b
- Apply partially Gaussian elimination
- Solve the reduced system $Sx_{\Gamma} = f$
- Then solve $A_i x_i = b_i A_{i,\Gamma} x_{\Gamma}$

$$\begin{pmatrix} \mathcal{A}_{1,1} & 0 & \mathcal{A}_{1,\Gamma} \\ 0 & \mathcal{A}_{2,2} & \mathcal{A}_{2,\Gamma} \\ 0 & 0 & \mathcal{S} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_{\Gamma} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_{\Gamma} - \sum_{i=1}^{2} \mathcal{A}_{\Gamma,i} \mathcal{A}_{i,i}^{-1} & b_i \end{pmatrix}$$

Solve $Ax = b \Longrightarrow$ solve the reduced system $Sx_{\Gamma} = f \Longrightarrow$ then solve $A_i x_i = b_i - A_{i,\Gamma} x_{\Gamma}$

where
$$\mathcal{S} = \mathcal{A}_{\Gamma,\Gamma} - \sum_{i=1}^2 \mathcal{A}_{\Gamma,i} \mathcal{A}_{i,i}^{-1} \mathcal{A}_{i,\Gamma}$$
 ,

and
$$f = b_{\Gamma} - \sum_{i=1}^{2} A_{\Gamma,i} A_{i,i}^{-1} b_{i}$$
.

Parallel implementation for solving Ax = b

• Each subdomain $A^{(i)}$ is handled by one processor

$$\mathcal{A}^{(i)} \equiv \begin{pmatrix} \mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}} & \mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}} \\ \mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}} & \mathcal{A}_{\Gamma\Gamma}^{(i)} \end{pmatrix}$$

 Concurrent partial factorizations are performed on each processor to form the so called "local Schur complement"

$$\mathcal{S}^{(i)} = \mathcal{A}_{\Gamma\Gamma}^{(i)} - \mathcal{A}_{\Gamma_{i}\mathcal{I}_{i}}\mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}}^{-1}\mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}}$$

- The reduced system $Sx_{\Gamma} = f$ is solved using a distributed Krylov solver
 - One matrix vector product per iteration each processor computes $\mathcal{S}^{(i)}(\mathbf{x}_{\Gamma}^{(i)})^k = (\mathbf{y}^{(i)})^k$
 - One local preconditioner apply $(\mathcal{M}^{(i)})(z^{(i)})^k = (r^{(i)})^k$
 - Local neighbor-neighbor communication per iteration
 - Global reduction (dot products)
- Compute simultaneously the solution for the interior unknowns

$$\mathcal{A}_{\mathcal{I}_i\mathcal{I}_i}\mathsf{x}_{\mathcal{I}_i}=b_{\mathcal{I}_i}-\mathcal{A}_{\mathcal{I}_i\mathsf{\Gamma}_i}\mathsf{x}_{\mathsf{\Gamma}_i}$$

Experiments on large 3D structural mechanics applications Experiments on large 3D structural mechanics applications

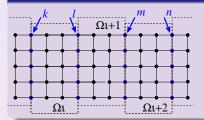
Outline

- Motivations
- 2 Background
- 3 Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- Experiments on large 3D structural mechanics applications
- 2 Experiments on large 3D seismic modelling applications
- 8 Perspectives

Nonoverlapping Domain Decomposition

Schur complement reduced system

Experiments on large 3D structural mechanics applications Experiments on large 3D seismic modelling applications



 $\Gamma = k \cup \ell \cup m \cup n$

Distributed Schur complement

$$\overbrace{\begin{pmatrix} \mathcal{S}_{kk}^{(\iota)} & \mathcal{S}_{k\ell} \\ \mathcal{S}_{\ell k} & \mathcal{S}_{\ell \ell}^{(\iota)} \end{pmatrix}}^{\Omega_{\iota}}$$

$$\overbrace{\begin{pmatrix} \mathcal{S}_{\ell\ell}^{(\iota+1)} & \mathcal{S}_{\ell m} \\ \mathcal{S}_{m\ell} & \mathcal{S}_{mm}^{(\iota+1)} \end{pmatrix}}^{\Omega_{\iota+1}}$$

$$\begin{array}{c|c}
S_{mm}^{(\iota+2)} & S_{mn} \\
S_{nm} & S_{nn}^{(\iota+2)}
\end{array}$$

In an assembled form:
$$\mathcal{S}_{\ell\ell} = \mathcal{S}_{\ell\ell}^{(\iota)} + \mathcal{S}_{\ell\ell}^{(\iota+1)} \Longrightarrow \mathcal{S}_{\ell\ell} = \sum_{\iota \in \mathit{adj}} \mathcal{S}_{\ell\ell}^{(\iota)}$$

Non-overlapping Domain Decomposition

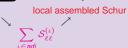
Algebraic Additive Schwarz preconditioner [L.Carvalho, L.Giraud, G.Meurant - 01]

$$\begin{split} \mathcal{S} &= \sum_{i=1}^{N} \mathcal{R}_{\Gamma_{i}}^{T} \mathcal{S}^{(i)} \mathcal{R}_{\Gamma_{i}} \\ \mathcal{S} &= \begin{pmatrix} & \ddots & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

where
$$\bar{S}^{(i)}$$
 is obtained from $S^{(i)}$

$$\mathcal{S}^{(i)} = \begin{pmatrix} \mathcal{S}_{kk}^{(\iota)} & \mathcal{S}_{k\ell} \\ \mathcal{S}_{\ell k} & \mathcal{S}_{\ell \ell}^{(\iota)} \end{pmatrix} \Longrightarrow \bar{\mathcal{S}}^{(i)} = \begin{pmatrix} \mathcal{S}_{kk} & \mathcal{S}_{k\ell} \\ \mathcal{S}_{\ell k} & \mathcal{S}_{\ell \ell} \end{pmatrix}$$

local Schur



Algebraic Additive Schwarz preconditioner

Main characteristics in 2D [PhD of J. C. Rioual - 02]

- The ratio interface/interior is small
- Does not require large amount of memory to store the preconditioner
- Computation/application of the preconditioner are fast
- They consist in a call to LAPACK/BLAS-2 kernels

Main characteristics in 3D

- The ratio interface/interior is large
- The storage of the preconditioner might not be affordable
- The computation/application cost of the preconditioner might penalize the method
- Need cheaper Algebraic Additive Schwarz form of the preconditioner

Experiments on large 3D structural mechanics applications Experiments on large 3D seismic modelling applications

What tricks exist to construct cheaper preconditioners

Sparsification strategy

Sparsify the preconditioner by dropping the smallest entries

$$\widehat{\mathbf{s}}_{k\ell} = \left\{ egin{array}{ll} \overline{\mathbf{s}}_{k\ell} & ext{if} & \overline{\mathbf{s}}_{k\ell} \geq \xi(|\overline{\mathbf{s}}_{kk}| + |\overline{\mathbf{s}}_{\ell\ell}|) \\ 0 & ext{else} \end{array}
ight.$$

- Good in many PDE contexts
- Remarks: This sparse strategy was originally developed for SPD matrices

Mixed arithmetic strategy

- Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?
- Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!
- Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages
- Remarks: the backward stability result of GMRES indicates that it is hopeless to expect convergence at a backward error level smaller than the 32-bit accuracy [C.Paige, M.Rozložník, Z.Strakoš - 06]
- Idea: To overcome this limitation we use FGMRES [Y.Saad 93]

Outline

- Motivations
- 2 Background
- 3 Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- Experiments on large 3D structural mechanics applications
- Experiments on large 3D seismic modelling applications
- Perspectives

Computational framework

Target computer

- IBM SP4@ CINES
- Cray XD1 @ CERFACS
- IBM JS21 @ CERFACS
- Blue Gene/L @ CERFACS
- IBM SP4 @ IDRIS
- System X @ VIRGINIA TECH

System X @ VIRGINIA TECH

- 2200 processors
- Apple Xserve G5
- 2-Way SMP
- running at 2.3 GHz
- 4 Gbytes/node
- latency of 6.1 μs

Blue Gene/L @ CERFACS

- 2048 processors
- PowerPC 440s
- 2-Way SMP
- running at 700 MHz
- 1 Gbytes/node
- latency of 1.3 10 μ s

IBM JS21 @ CERFACS

- 216 processors
- PowerPC 970MP
- 4-Way SMP
- running at 2.5 GHz
- 8 Gbytes/node
- latency of 3.2 μ s

Software framework

Local direct solver: MUMPS [P.Amestoy, I.Duff, J.Koster, J.Y.L'Excellent - 01]

- Main features
 - Parallel distributed multifrontal solver (F90, MPI)
 - Symmetric and Unsymmetric factorizations
 - Element entry matrices, distributed matrices
 - Efficient Schur complement calculation
 - Iterative refinement and backward error analysis
- Public domain: new version 4.7.3

http://mumps.enseeiht.fr/

Iterative solver: KRYLOV

- Symmetric positive definite
 - Parallel distributed Conjugate gradient solver [V.Frayssé, L.Giraud 00]
- Unymmetric or undefinite symmetric
 - Parallel distributed GMRES/FGMRES solver [V.Frayssé, L.Giraud, S.Gratton 97]
- Public domain:

http://www.cerfacs.fr/algor/Softs/

Academic model problems
Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Outline

- Motivations
- 2 Background
- 3 Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- Experiments on large 3D structural mechanics applications
- Experiments on large 3D seismic modelling applications
- 8 Perspectives

Algebraic Additive Schwarz preconditioner

Experiments on large 3D academic model problems

Experiments on large 3D structural mechanics applications

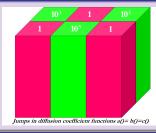
Experiments on large 3D seismic modelling applications

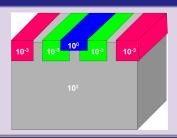
Academic model problems

Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Academic model problems

Problem patterns





Diffusion equation ($\epsilon = 1$ and $\nu = 0$)

$$\left\{ \begin{array}{rcl} -\epsilon \mathsf{div}(\mathsf{K}.\nabla u) + v.\nabla u & = & f & \text{in} & \Omega, \\ u & = & 0 & \text{on} & \partial \Omega \end{array} \right.$$

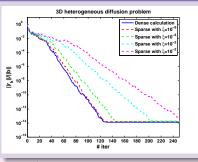
- Classical Poisson problems
- Heterogeneous problems
- Anisotropic-heterogeneous problems
- Convection dominated term

Academic model problems Numerical behaviour on diffusion equations

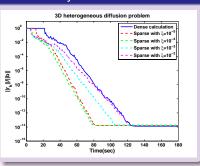
Parallel numerical scalability on diffusion equations Numerical behaviour on convection-diffusion equations Parallel numerical scalability on convection-diffusion equations

Numerical behaviour of sparse preconditioners

Convergence history of PCG



Time history of PCG



- 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors
- For $(\mathcal{E} \ll 1)$ the convergence is marginally affected while the memory saving is significant 15%
- For (ξ >>>) a lot of resources are saved but the convergence becomes very poor 1%
- Even though they require more iterations, the sparsified variants converge faster as the time per iteration is smaller and the setup of the preconditioner is cheaper. 🗇 🔭 📑 🧎 📑

Academic model problems

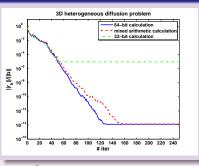
Numerical behaviour on diffusion equations

Parallel numerical scalability on diffusion equations

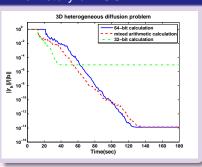
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Numerical behaviour of mixed preconditioners

Convergence history of PCG



Time history of PCG



- 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors
- 64-bit and mixed computation both attained an accuracy at the level of 64-bit machine precision
- The number of iterations slightly increases
- The mixed approach is the fastest, down to an accuracy that is problem dependent

Academic model problems

Numerical behaviour on diffusion equations

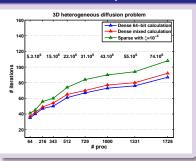
Parallel numerical scalability on diffusion equations

Numerical behaviour on convection-diffusion equations

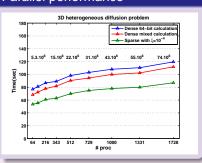
Parallel numerical scalability on convection-diffusion equations

Scaled scalability on massively parallel platforms

Numerical scalability



Parallel performance



- The solved problem size varies from 2.7 up to 74 Mdof
- Control the grow in the # of iterations by introducing a coarse space correction
- The computing time increases slightly when increasing # sub-domains
- Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable
- The trend is similar for all variants of the preconditioners using CG Krylov solver

Academic model problems

Numerical behaviour on diffusion equations

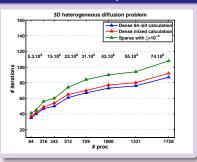
Parallel numerical scalability on diffusion equations

Numerical behaviour on convection-diffusion equations

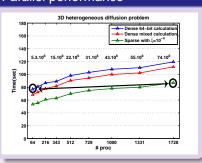
Parallel numerical scalability on convection-diffusion equations

Scaled scalability on massively parallel platforms

Numerical scalability



Parallel performance



- The solved problem size varies from 2.7 up to 74 Mdof
- Control the grow in the # of iterations by introducing a coarse space correction
- The computing time increases slightly when increasing # sub-domains
- Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable
- The trend is similar for all variants of the preconditioners using CG Krylov solver

Academic model problems

Numerical behaviour on diffusion equations

Parallel numerical scalability on diffusion equations

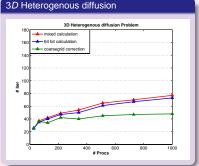
Numerical behaviour on convection-diffusion equations

Parallel numerical scalability on convection-diffusion equations

Numerical alternative: numerical scalability in 3D

Domain based coarse space : $M = M_{AS} + R_Q^T A_O^{-1} R_0$ where $A_0 = R_0 S R_O^T$

- "As many" dof in the coarse space as sub-domains [Carvalho, Giraud, Le Tallec, 01]
- Partition of unity : R_0^T simplest constant interpolation



Experiments on large 3D structural mechanics applications
Experiments on large 3D structural mechanics applications
Experiments on large 3D seismic modelling applications

Academic model problems

Numerical behaviour on diffusion equations

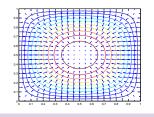
Parallel numerical scalability on diffusion equations

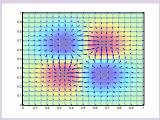
Numerical behaviour on convection-diffusion equations

Parallel numerical scalability on convection-diffusion equations

Academic model problems

Problem patterns





Convection-diffusion equation

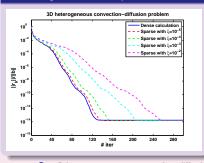
$$\begin{cases} -\epsilon \operatorname{div}(K.\nabla u) + v.\nabla u &= f & \text{in} \quad \Omega, \\ u &= 0 & \text{on} \quad \partial \Omega. \end{cases}$$

- Classical Poisson problems
- Heterogeneous problems
- Anisotropic-heterogeneous problems

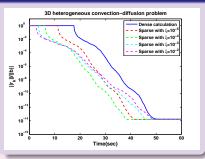
Academic model problems
Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations.

Numerical behaviour of sparse preconditioners

Convergence history of GMRES



Time history of GMRES



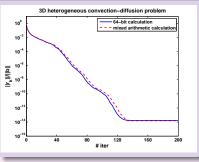
- 3D heterogeneous convection-diffusion problem of 27 Mdof mapped on 1000 processors
- For $(\xi \gg)$ a lot of resources are saved but the convergence becomes very poor
- Even though they require more iterations, the sparsified variants converge faster as the time per iteration is smaller and the setup of the preconditioner is cheaper.

Academic model problems
Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations

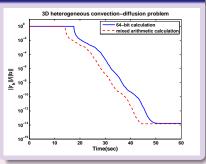
Parallel numerical scalability on convection-diffusion equations

Numerical behaviour of mixed preconditioners

Convergence history of FGMRES



Time history of FGMRES

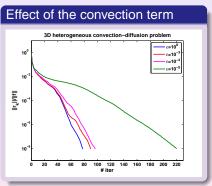


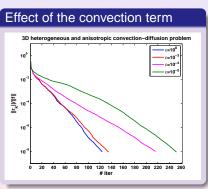
- 3D heterogeneous convection-diffusion problem of 27 Mdof mapped on 1000 processors
- 64-bit and mixed computation both attained an accuracy at the level of 64-bit machine precision using the FGMRES solver
- The mixed arithmetic implementation compares favorably with the 64-bit one.
- The saving in computing time of the mixed approach is less distinctive due the platform

Academic model problems
Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations

Parallel numerical scalability on convection-diffusion equations

Effect of the Péclet number





- 3D convection-diffusion problems of 27 Mdof dof mapped on 1000 processors
- Increasing the convection term makes harder the problem to solve

Academic model problems

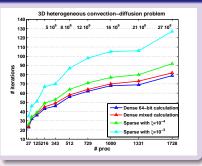
Numerical behaviour on diffusion equations

Parallel numerical scalability on diffusion equations

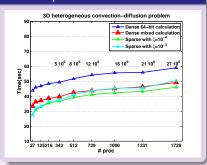
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Scaled scalability on massively parallel platforms

Numerical scalability



Parallel performance



- The mixed preconditioner performs very similarly
- The sparser the preconditioner, the larger gap in the number of iterations is
- Even if the number of iterations to converge increases as the number of subdomains increases, the parallel scalability of the preconditioners remains acceptable
- The trend is similar for all variants of the preconditioner using GMRES/FGMRES solver

Academic model problems
Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Summary on the model problems [L.Giraud, A.Haidar, L.T.Watson - 08]

Sparse preconditioner

- lacktriangle For reasonable choice of the dropping parameter ξ the convergence is marginally affected
- The sparse preconditioner outperforms the dense one in time and memory

Mixed preconditioner

- Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision
- Mixed preconditioner does not delay that much the convergence

On the parallel scalability

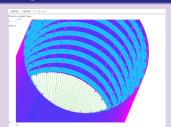
- Although these preconditioners are local, possibly not numerically scalable, they exhibit a fairly good parallel time scalability (possible fix for elliptic problems)
- The trends that have been observed on this choice of model problem have been observed on many other problems

Outline

- Motivations
- 2 Background
- Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- Experiments on large 3D structural mechanics applications
- 2 Experiments on large 3D seismic modelling applications
- Perspectives

Indefinite systems in structural mechanics S. Pralet, SAMTECH

Fuselage of 6.5 Mdof



- Composed of its skin, stringers and frames
- Midlinn shell elements are used
- Each node has 6 unknowns
- A force perpendicular to the axis is applied

Rouet of 1.3 Mdof

- A 90 degrees sector of an impeller
- It is composed of 3D volume elements
- Cyclic conditions are added using elements with 3 Lagranges multipliers
- Angular velocities are introduced

Partitioning strategies

Main characteristics

- Linear elasticity equations with constraints such as rigid bodies and cyclic conditions
- Lagrange multipliers ⇒ symmetric indefinite augmented systems

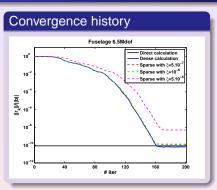
Numerical difficulties

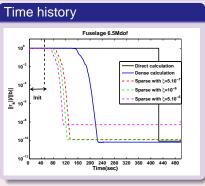
- The local matrix associated with the internal unknowns might be structurally singular
- Fix Lagrange multipliers difficulties
- Idea: enforce the Lagrange multipliers to be moved into the interface

Performance difficulties

- Needs to balance and optimize the distribution of the Lagrange multipliers among the balanced subdomains
- Apply constraint (weights) to the partitioner (dual mesh graph)

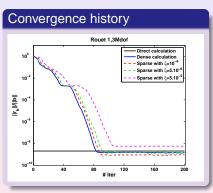
Numerical behaviour of sparse preconditioners

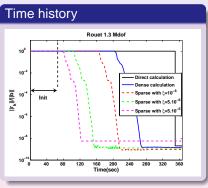




- Fuselage problem of 6.5 Mdof dof mapped on 16 processors
- The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)
- In term of global computing time, the sparse algorithm is about twice faster
- The attainable accuracy of the hybrid solver is comparable to the one computed with the direct solver

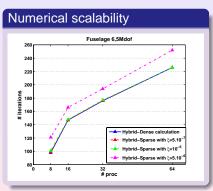
Numerical behaviour on sparse preconditioners

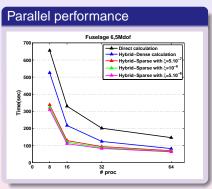




- Rouet problem of 1.3Mdof dof mapped on 16 processors
- The sparsified variant outperforms its dense counterpart
- The hybrid techniques solution is comparable to the one obtain with the direct solver

Performance on indefinite systems

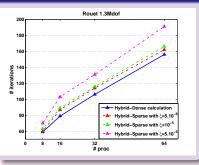




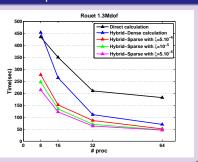
- Fixed problem size: increasing the # of subdomains ⇒ an increase in the # of iterations
- Attractive speedups can be observed
- The sparsified variant the most efficient (CPU, memory)

Performance on indefinite systems

Numerical scalability



Parallel performance



- Fixed problem size: increasing the # of subdomains ⇒ a linear (slight??) growth in the # of iterations
- Very attractive speedups can be observed
- The sparsified variant is of great interest
- Compared with the sparse direct solver, the hybrid approach gives always the fastest scheme

Summary on the structural mechanics problems

Characteristics of the hybrid approach

- It was observed that the mixed precision algorithm behaves very closely to the 64-bit algorithm
- The sparse preconditioner represents a significant saving in computing ressources
- Relax the stopping criterion when embedded into a nonlinear solver

Difficulties

- The number of iterations increases when increasing the number of subdomains
- Large amount of memory storage is required for such engineering applications

One of the solutions

Exploit 2-levels of parallelism

Exploiting 2-levels of parallelism - motivations

"The numerical improvement"

- Classical parallel implementations (1-level) of DD assign one subdomain per processor
- Parallelizing means increasing the number of subdomains
- Increasing the number of subdomains often leads to increasing the number of iterations
- To avoid this, one can instead of increasing the number of subdomains, keeping it small while handling each subdomain by more than one processor introducing 2-levels of parallelism

"The parallel performance improvement"

- Large 3D systems often require a huge amount of data storage
- On SMP node: classical 1-level parallel can only use a subset of the available processors
- Thus some processors are "wasted", as they are "idle" during the computation
- The "idle" processors might contribute to the computation and the simulation runs closer to the peak of per-node performance by using 2-levels of parallelism

Numerical improvement benefits

Fuselage of 6.5Mdof

# total	Algo	#	# processors/	#	iterative
processors		subdomains	subdomain	iter	loop time
16 processors	1-level parallel	16	1	147	77.9
10 processors	2-level parallel	8	2	98	51.4
	1-level parallel	32	1	176	58.1
32 processors	2-level parallel	16	2	147	44.8
	2-level parallel	8	4	98	32.5
	1-level parallel	64	1	226	54.2
64 processors	2-level parallel	32	2	176	40.1
0 1 2100000010	2-level parallel	16	4	147	31.3
	2-level parallel	8	8	98	27.4

- Reduce the number of subdomains => reduce the number of iterations
- Though the subdomain size increases, the time of the iterative loop decreases as:
 - The number of iterations decreases
 - Each subdomain is handled in parallel
 - All the iterative kernels are efficiently computed in parallel
 - The speedup factors of the iterative loop vary from 1.3 to 1.8
- Very attractive especially when the convergence rate depends on the # of subdomains

Parallel performance benefits

Fuselage of 6.5Mdof

# subdomains or SMP node	Algo	proc/subdom or "working"	Precond setup time	# iter	iterative loop time	Total time
	1-level	1	208.0		94.1	525.1
8	2-level	2	124.6	98	51.5	399.1
	2-level	4	70.8		32.5	326.4
	1-level	1	89.0		77.9	217.2
16	2-level	2	52.7	147	44.8	147.8
	2-16761	4	30.4		31.3	112.0
	1-level	1	30.0		58.1	124.1
32	2-level	2	20.4	176	40.8	97.2
	2 10001	4	13.0		22.7	71.7

- When running large simulations that need all the memory available on the nodes
- The 1-level parallel algo "wastes" ressource performance (it lose 48 "idle" processors on 16 SMP)
- The 2-level parallel algo exploits the computing facilities of the remaining "idle" processors
- The 2-level parallel algo runs closer to the peak of per-node performance
- The preconditioner setup time benefits vary from 1.5 to 3
- The speedup factors of the iterative loop vary from 1.8 to 2.7

Outline

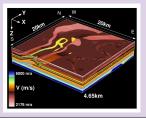
- Motivations
- 2 Background
- Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- Experiments on large 3D structural mechanics applications
- 2 Experiments on large 3D seismic modelling applications
- 8 Perspectives

Seismic modelling applications

Parallel and numerical performance on seismic problems Exploiting 2-levels of parallelism

Seismic modelling applications SEISCOPE CONSORTHUM

3D SEG/EAGE Overthrust model

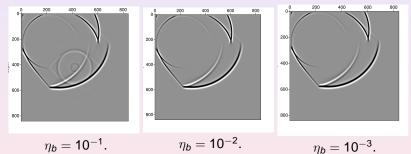


- Solve the Helmholtz equation
- $20 \times 20 \times 4.65 \, km^3$
- 4 grid points per minimum wavelength
- PML (Perfectly-Matched Layer) [J.P.Berenger - 94]
- 5.6 Mdof at 7 Hz

Main characteristics

- Frequency-domain full-waveform tomography [F.Sourbier, S.Operto, J.Virieux 08]
- The inversion of a few frequencies are enough to build velocity models
- Multisource frequency-domain wave modeling requires the solution of multiple RHS
- Traditional method of choice for solving these systems relies on sparse direct solvers
- To overcome this limitation, the goal is to develop efficient hybrid methods for large 3D

Comments on the stopping criterion



Hybrid solver for 2×2 subdomains on the 2D corner-edge model.

Performance on unsymmetric complex systems

3D SEG/EAGE Overthrust model at 7Hz

subdomains		Memory	Initial-	Precond-	# of	Time per	Total	
#	size interface		All (GB) ization		itioner iterations		RHS	time
50	54 × 54 × 31	11056	191.6	614	497.1	81	67.8	1178.9
72	$45 \times 45 \times 31$	8833	179.3	334	273.5	103	73.9	681.4
96	$45 \times 33 \times 31$	7405	167.8	184	153.8	119	61.1	398.9
98	$38 \times 38 \times 31$	7216	169.7	189	141.5	148	66.7	397.2
192	$33 \times 33 \times 21$	5578	147.4	90	78.2	235	85.8	254.0

- Complex shifted variant of the Algebraic Additive Schwarz preconditioner is used
- Increasing the number of subdomains reduces the memory requirement for hybrid solver
- Increasing the number of subdomains reduces the memory requirement for direct solver

Numerical improvement benefits

2-levels of parallelism on 3D Overthrust SEG/EAGE

Frequency equal to 7 Hz												
Available	Algo	Algo # Processors/ # Iterative										
processors		subdomains	subdomain	iter	loop	RHS						
	1-level parallel	192	1	235	79.0	85.8						
≥ 200 processors	2-level parallel	96	2	119	38.2	45.1						
	2-level parallel	50	4	81	28.1	35.5						
	1-level parallel	96	1	119	57.0	61.1						
≥ 100 processors	1-level parallel	98	1	148	66.7	66.7						
	2-level parallel	50	2	81	39.1	45.1						

- Reduce the number of subdomains ⇒ reduce the number of iterations.
- Though the subdomain size increases, the time of the iterative loop decreases as:
- The speedup factor of one RHS simulation vary from 1.3 to 2.5
- Very attractive approach for multiple right-hand sides simulations

Parallel performance benefits

2-levels of parallelism on 3D Overthrust SEG/EAGE

# subdomains	Algo	proc/subdom	Precond	#	iterative	Time per	Total
		or "working"	setup time	iter	loop time	RHS	time
	1-level	1	497.1		64.4	67.8	1178.9
50	2-level	2	262.4	81	39.1	45.1	854.5
	2-16761	4	135.3		28.1	35.5	419.8
81	1-level	1	256.3	109	73.6	77.4	557.7
01	2-level	2	169.2	103	53.7	57.2	431.4
96	1-level	1	153.8	119	57.0	61.1	398.9
30	2-level	2	81.2	119	38.2	45.1	299.3

- The preconditioner setup time benefits vary from 1.5 to 3.6
- One RHS simulation time is improved by a factor of 1.3 to 1.7

Outline

- Motivations
- 2 Background
- 3 Algebraic Additive Schwarz preconditioner
- Experimental environment
- 5 Experiments on large 3D academic model problems
- Experiments on large 3D structural mechanics applications
- Experiments on large 3D seismic modelling applications
- 8 Perspectives

Perspectives

PHyLeaS project International INRIA "Associate Team"

- Reduce the preconditioner cost
- Study alternative strategies to get sparse approximation of the local Schur
- Special attention would have to be paid to ensure a good work balance strategy

Solstice project ANR-06-CIS6- 010

- Study the behavior of the preconditioner on more general problems
- Extend this algebraic techniques to general sparse matrices

$$S^{(i)} = A^{(i)}_{\Gamma_i \Gamma_i} - A_{\Gamma_i I_i} A^{-1}_{I_i I_i} A_{I_i \Gamma_i}$$

3D Poisson problem (# PCG iterations)

		# subdomains ≡ # processors							
subdomain grid size		27	64	125	216	343	512	729	1000
20 × 20 × 20	$M_{ m d-64} \ M_{ m sp-64} \ M_{\phi LeaS}$	16 16 22	23 23 29	25 26 32	29 31 39	32 34 43	35 39 48	39 43 52	42 46 58

3D heterogeneous diffusion (# PCG iterations)

		# subdomains ≡ # processors							
subdomain grid size		27	64	125	216	343	512	729	1000
20 × 20 × 20	$M_{ m d-64} \ M_{ m sp-64} \ M_{\phi LeaS}$	22 23 27	32 34 37	34 39 42	41 47 51	45 49 54	55 62 68	60 70 75	67 76 85

Memory saving (Gb)

subdomain size	8 kdof	16 kdof	27 kdof	43 kdof	64 kdof	91 kdof
Explicit Schur	0.13	0.34	0.74	1.40	2.34	4.18
pILUt	0.02	0.04	0.09	0.14	0.29	0.47

PHyLeaS next steps

Next steps

- More experiments
- Study the effect of the interior ordering on numerical performance (quality of Schur approximation)
- Study variants of ILU to approximate the Schur complement (ILU-pack)joint work with M. Bollhoefer

Black-box hybrid method based on algebraic approach

Partitioning general matrix into N blocks

Preliminary results

			# blocks	3				
	Matrix	Preconditioner	8	16	32	64	96	
name	size	nnz						
bcsstk18	11,948	149,090	Block Jacobi	88	135	171	192	208
DOSSIKTO	DC331K10 11,940 149,		Additive Schwarz		42	60	83	86
nasasrb	54,870	1.366.097	Block Jacobi	72	189	649	885	-
Пававть	01,070	1,000,001	Additive Schwarz	42	97	148	165	251
ex11	16.614	1,096,948	Block Jacobi	266	656	931	-	-
0,1.1	10,014 1,090,940		Additive Schwarz	17	17	35	43	57

Consumming energy during the thesis

CPU hours consuming and CO₂ emission

During this thesis more than 11000 runs on HPC machine:

Consumption

• 85032 h on SYSTEM X @ Virg Tech → 8928 Kw } 8928 K

Pollution

Thank you for your attention

USA