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Motivations

Ax =b

Solution of very Large/Huge ill-conditioned sparse linear systems Ax =

@ Such problems can require thousands of CPU-hours and many
Gigabytes of memory

@ Direct solvers:

- Robust and usually do not fail

- Memory and computational costs grow nonlinearly
@ lterative solvers:

- Reduce memory requirements
- They may fail to converge
- Typically implemented with preconditioning to accelerate convergence

In an effort to reduce these requirements, a parallel mechanism for
combining advantages of those solvers is needed
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Experiments
Experiments on large 3D struc pplications

Experiments on large 3D seismic modelling application:

Goal

Develop robust scalable parallel hybrid direct/iterative linear solvers
@ Exploit the efficiency and robustness of the sparse direct solvers
@ Develop robust parallel preconditioners for iterative solvers

@ Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

@ Natural approach for PDE’s

@ Extend to general sparse matrices

@ Partition the problem into subdomains,
subgraphs

@ Use a direct solver on the subdomains

@ Robust preconditioned iterative solver

311 cut edges.
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Outline

e Background
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Background

Overlapping Domain Decomposition

Classical Additive Schwarz preconditioners ‘

Goal: solve linear system Ax = b

Use iterative method

Apply the preconditioner at each step

The convergence rate deteriorates as the
number of subdomains increases

© 06660
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Experiments on large

Non-overlapping Domain Decomposition
Schur complement reduced system

@ Goal: solve linear system Ax = b
@ Apply partially Gaussian elimination
@ Solve the reduced system Sxr = f
@ Then solve Ajx; = bj — Aj rxr

,,,,,,,,,,, QL
A X = b =
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Experiments on large

Non-overlapping Domain Decomposition
Schur complement reduced system

@ Goal: solve linear system Ax = b
@ Apply partially Gaussian elimination
@ Solve the reduced system Sxr = f
@ Then solve Ajx; = bj — Aj rxr

,,,,,,,,,,, QL
Ai 0 Air X1 b1
0 A Ar X2 [ = 2 bz
o o s X br = .21: Ars A" b

Solve Ax = b = solve the reduced system Sxr = f = then solve A;x; = bj — A; rxr

2
where S = Arr — Z Ar,iAﬂlAi,r ,

i=1

2
and f = br —> AriA by
i=1
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Background

Parallel implementation for solving Ax = b

@ Each subdomain A" is handled by one processor

; Az, Az,
(l) = 1= ili
AT = (AIiri A(rlg )

@ Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

S(i) = -Al('lg - Ar\Ii ‘Ailz. ‘AIiﬂ

@ The reduced system Sxr = f is solved using a distributed Krylov solver

- One matrix vector product per iteration each processor computes S(‘)(xlﬁ'))k = (y)k
- One local preconditioner apply (M) (zM)k = (rM)k

- Local neighbor-neighbor communication per iteration

- Global reduction (dot products)

@ Compute simultaneously the solution for the interior unknowns

Az Xz, = by, — AzriXr;
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Algebraic Additive Schwarz preconditioner PRI e
Schur complement

Schwarz preconditioner

Outline

e Algebraic Additive Schwarz preconditioner
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Algeb Additive Schi diti
gebraic tive Schwarz preconditioner Structure of the Local Schur complement

Variants of Additive Schwarz preconditioner

Nonoverlapping Domain Decomposition

Schur complement reduced system ‘

Fr=ku/umun

,,,,,,,,,,, QL
Distributed Schur complement |
QL QL+1 QL+2

—— ——Y
3;5;) Ske Séfl) Sem
Su S Sme  Sv

In an assembled form: S,, = Sf,’é) e SE,'/‘ Y= gy = > SE’}

ct€adj
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Background
Algebraic Additive Schwarz preconditioner
Experiments on large 3D academic model problem:
Experiments on large ] ictural mechanics applications

Structure of the Local Schur complement
Variants of Additive Schwarz preconditioner

Experiments on large 3D seismic modelling applications

Non-overlapping Domain Decomposition
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Algeb Additive Schi diti
gebraic tive Schwarz preconditioner Structure of the Local Schur complement

Variants of Additive Schwarz preconditioner

Algebraic Additive Schwarz preconditioner

Main characteristics in 2D |

@ The ratio interface/interior is small
@ Does not require large amount of memory to store the preconditioner
@ Computation/application of the preconditioner are fast

@ They consist in a call to LAPACK/BLAS-2 kernels
v

Main characteristics in 3D |

@ The ratio interface/interior is large

@ The storage of the preconditioner might not be affordable

@ The computation/application cost of the preconditioner might penalize the method
@ Need cheaper Algebraic Additive Schwarz form of the preconditioner

.
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Algebraic Additive Schwarz preconditioner
9 p Structure of the Local Schur complement

Variants of Additive Schwarz preconditioner

What tricks exist to construct cheaper preconditioners

Sparsification strategy ‘

@ Sparsify the preconditioner by dropping the smallest entries

5, = Sk it Ske > &(|Skk| + [Seel)
M= 0 else

@ Good in many PDE contexts

@ Remarks: This sparse strategy was originally developed for SPD matrices
V.

Mixed arithmetic strategy |

@ Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?

@ Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!
@ Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages
(*]

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozloznik, Z.Strakos - 06]

@ |dea: To overcome this limitation we use FGMRES [Y.Saad - 93]

V.
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Outline

e Experimental environment
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Computational framework
Software framework

Computational framework

@ BMSP4 @ CINES

@ CrayxDl @ CERFACS
@ BMJS21 @ CERFACS
@ Blue Gene/lL @ CERFACS
@ BMSP4 @ IDRIS

()

SystemX @ VIRGINIA TECH )

System X @ VIRGINIA TECH Blue Gene/L @ CERFACS IBM JS21 @ CERFACS

@ 2200 processors @ 2048 processors @ 216 processors

@ Apple Xserve G5 @ PowerPC 440s @ PowerPC 970MP
@ 2-Way SMP @ 2-Way SMP @ 4-Way SMP

@ running at 2.3 GHz @ running at 700 MHz @ running at 2.5 GHz
@ 4 Gbytes/node @ 1 Gbytes/node @ 8 Gbytes/node

@ latency of 6.1 us @ latency of 1.3 - 10 us @ latency of 3.2 us
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Computational framework
Software framework

Software framework

Local direct solver : MUMPS

@ Main features

- Parallel distributed multifrontal solver (F90, MPI)
- Symmetric and Unsymmetric factorizations

- Element entry matrices, distributed matrices

- Efficient Schur complement calculation

- lterative refinement and backward error analysis

@ Public domain: new version 4.7.3
http://mumps.enseeiht.fr/

.

Iterative solver : KRYLOV
@ Symmetric positive definite
- Parallel distributed Conjugate gradient solver [V.Frayssé, L.Giraud - 00]
@ Unymmetric or undefinite symmetric
- Parallel distributed GMRES/FGMRES solver [V.Fraysseé, L.Giraud, S.Gratton - 97]

@ Public domain:
http://www.cerfacs.fr/algor/Softs/

v

18/54 Parallel Hybrid Method for Large Sparse Linear Systems




Academic model problems

Numerical behaviour on diffusion equations

Parallel numerical scalability on diffusion equations

Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Experiments on large 3D academic model problems

Outline

e Experiments on large 3D academic model problems

19/54 Parallel Hybrid Me r Large Sparse Linear System:




Academic model problems
Numerical behaviour on diffusion equations
Experiments on large 3D academic model problems Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Academic model problems

Problem patte

Junps in diffasion coefficient functions a()= b()=c()

Diffusion equation

|
-

in  Q,

—ediv(K.Vu) +v.Vu
on 0Q.

u

Il
o

@ Classical Poisson problems

@ Heterogeneous problems

@ Anisotropic-heterogeneous problems
@ Convection dominated term
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Acad > model problems

Numerical behaviour on diffusion equations
Experiments on large 3D academic model problems Parallel numerical

ability on diffusion equations
Numerical bet tion-diffusion equations
Parallel numerical on convection-diffusion equations

Numerical behaviour of sparse preconditioners

Convergence history of PCG Time history of PCG |

3D heterogeneous diffusion problem

3D heterogeneous diffusion problem

Dense calculation 0
- - - Sparse with £=10"°|

Dense calculation
- - - Sparse with &=10"°|

- - - Sparse with &=10"?|

0 0 20 40 60 80 100 120 140 160 180 200 220 240 0 WO 20 40 60 80 100 120 140 160 180
#iter Time(sec)
V. <
@ 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

@ For (¢ ) the convergence is marginally affected while the memory saving is

significant 15%

For (£ >>) a lot of resources are saved but the convergence becomes very poor 1%

Even though they require more iterations, the sparsified variants converge faster as the time

per iteration is smaller and the setup of the preconditioner is cheaper.
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Acad > model problems
Numerical behaviour on diffusion equations
Experiments on large 3D academic model problems Parallel numerical ability on diffusion equations
Numerical bet tion-diffusion equations
Parallel numerical on convection-diffusion equations

Numerical behaviour of mixed preconditioners

Convergence history of PCG Time history of PCG |

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem

10° 4-bit calculation 1°
ixed arithmetic calculation|

- ixed arithmetic calculation|
10 W\\ 32-bit calculation ., Sa 32-bit calculation

-bit calculation

10
10
10
107 107
0 20 40 60 8 100 120 140 160 180 200 220 240 0 20 40 60 8 100 120 140 160 180
#iter Time(sec)
v v

@ 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

@ 64-bit and mixed computation both attained an accuracy at the level of 64-bit machine
precision

@ The number of iterations slightly increases

@ The mixed approach is the fastest, down to an accuracy that is problem dependent
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> model probl
| behaviour on diff n equations
Experiments on large 3D academic model problems Parallel numerical scalability on diffusion equations
Numerical bet tion-diffusion equations
Parallel numerical on convection-diffusion equations

Scaled scalability on massively parallel platforms

Numerical scalability Parallel performance |

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
—— Dense 64-bit calculation] —4— Dense 64-bit calculation]
—A— Dense mixed calculation| 160 —4— Dense mixed calculation|
140 —a— Sparse with £=10" —A— Sparse with £=107
140 ]
120
5310° 1510° 2210° 3110° 4310° 5510°  74.10° 120 33 10° 1510° 2210° 3110° 43.10°  55.10°  7410° |
2 100 5
2
§ 8 100 q
© T
g 8 E 80 1
= =
60 60 1
w 4 q
20 q
20
64 216 343 512 729 1000 1331 1728 64 216 343 512 729 1000 1331 1728
#proc # proc
y V.

@ The solved problem size varies from 2.7 up to 74 Mdof

@ Control the grow in the # of iterations by introducing a coarse space correction

@ The computing time increases slightly when increasing # sub-domains

@ Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable
@ The trend is similar for all variants of the preconditioners using CG Krylov solver
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| behaviour on diff n equations
Experiments on large 3D academic model problems Parallel numerical scalability on diffusion equations
Numerical bet tion-diffusion equations
Parallel numerical on convection-diffusion equations

Scaled scalability on massively parallel platforms

Numerical scalability Parallel performance |

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
—A— Dense 64-bit calculation] —A— Dense 64-bit calculation|
—A— Dense mixed calculation 160 —A— Dense mixed calculation
140 —a— Sparse with £=10" —A— Sparse with £=107
140 1
120
5310° 1510° 2210° 3110° 43.10° 5510°  74.10° 120, 223 10° 1510° 2210° 3110° 4310° 55.10° 710 |
2 100 5
2
k] 8 100 // 1
g T ) e
g % E 80 7N
i S
60 60 B
40 “© 1
20 1
20
64 216 343 512 729 1000 1331 1728 64 216 343 512 729 1000 1331 1728
#proc #proc
y V.

@ The solved problem size varies from 2.7 up to 74 Mdof

@ Control the grow in the # of iterations by introducing a coarse space correction

@ The computing time increases slightly when increasing # sub-domains

@ Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable
@ The trend is similar for all variants of the preconditioners using CG Krylov solver
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> model probl

| behaviour on diff n equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Numerical alternative: numerical scalability in 3D

Experiments on large 3D academic model problems

ain based coarse space : M = Mag +

@ “As many” dof in the coarse space as sub-domains
[Carvalho, Giraud, Le Tallec, 01]

@ Partition of unity : Rg simplest constant interpolation

by
2D Heterogenous diffusion 3D Heterogenous diffusion

2D Heterogenous diffusion Problem 3D Heterogenous diffusion Problem
—&— mixed calculation —&— mixed calculation
160| = 64 bit calculation 160| = 64 bit calculation
—A— coarse grid correction —A— coarsegrid correction
140
120
o . 100|
£ g
5 % 5
60|
40
20
] 200 400 600 800 1000 0 200 400 600 800 1000
#Procs #Procs
~ .
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Academic model problems

Numerical behaviour on diffusion equations

Parallel numerical scalability on diffusion equations

Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Experiments on large 3D academic model problems

Academic model problems

V.
Convection-diffusion equation ‘
—ediv(K.Vu)+v.Vu = f in Q,

u = 0 on 0Q.

@ Classical Poisson problems
@ Heterogeneous problems
@ Anisotropic-heterogeneous problems

v
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> model probl
| behaviour on difi n equations
Parallel numerical scalabilit

Experiments on large 3D academic model problems

y on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Numerical behaviour of sparse preconditioners

Convergence history of GMRES Time history of GMRES |

3D heterogeneous convection-diffusion problem

3D heterogeneous convection-diffusion problem
10° —— Dense calculation 10° —— Dense calculation
£=10"° - - - Sparse with £&=10"°|
107 X 107 07} Sy Sparse with
107 Sparse with
107 - - - Sparse with £=107 10% N \\ - - - Sparse with £=10"7|
. N

10
200 240 280

30
Time(sec)

v

@ 3D heterogeneous convection-diffusion problem of 27 Mdof mapped on 1000 processors

@ For (¢ «) the convergence is marginally affected while the memory saving is significant
@ For (¢ >>) alot of resources are saved but the convergence becomes very poor

@ Even though they require more iterations, the sparsified variants converge faster as the time
per iteration is smaller and the setup of the preconditioner is cheaper.
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| behaviour on diff n equations
Experiments on large 3D academic model problems Parallel numerical

alability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Numerical behaviour of mixed preconditioners

Convergence history of FGMRES Time history of FGMRES |

3D heterogeneous convection-diffusion problem

3D heterogeneous convection-diffusion problem

it calculation 10° 4-bit calculation
ixed arithmetic calculation| | -

mixed arithmetic calculation

0 10 20 40 50 60

30
Time(sec)

@ 3D heterogeneous convection-diffusion problem of 27 Mdof mapped on 1000 processors

@ 64-bit and mixed computation both attained an accuracy at the level of 64-bit machine
precision using the FGMRES solver

@ The mixed arithmetic implementation compares favorably with the 64-bit one.
@ The saving in computing time of the mixed approach is less distinctive due the platform
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> model probl
| behaviour on diff n equations
Parallel numerical scalability on diffusion equations

Numerical behaviour on convection-diffusion equations
Parallel numerical

Experiments on large 3D academic model problems

ability on convection-diffusion equations

Effect of the Péclet number

Effect of the convection term Effect of the convection term |

3D heterogeneous convection-diffusion problem

3D heterogeneous and anisotropic convection-diffusion problem

N —e=10" —e=10°
10 —e=10"
e=107
—e=10"°
107

20 40 60 80 100 120 140 160 180 200 220 0 20 40 60 80 100 120 140 160 180 200 220 240 260
#iter #iter

.
@ 3D convection-diffusion problems of 27 Mdof dof mapped on 1000 processors

@ Increasing the convection term makes harder the problem to solve
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Experiments on large 3D academic model problems Parallel numerical ability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convecti iffusion equations

Scaled scalability on massively parallel platforms

Numerical scalability Parallel performance |

3D heterogeneous convection-diffusion problem 3D heterogeneous convection-diffusion problem
130k 510° 810°. 1210° 16105 2110°. 27105 —A— Dense 64-bit calculation]
a0l Dense mixed calculation|
120F Sparse with £=10"*
L Sparse with £=10"°
110 7o
100-
510° 810° 1210° 1610° 2110°  2710°
o %of __ 60|
o
2 sof g
g T
3 70f £
*60F =
50
2 —&— Dense 64-bit calculation|
—&— Dense mixed calculation
307, Sparse with =107 200
208 Sparse with &=107
27125216 343 512 729 1000 1331 1728 27125216 343 512 729 1000 1331 1728
# proc # proc
V. v

@ The mixed preconditioner performs very similarly

The sparser the preconditioner, the larger gap in the number of iterations is

@ Even if the number of iterations to converge increases as the number of subdomains
increases, the parallel scalability of the preconditioners remains acceptable

@ The trend is similar for all variants of the preconditioner using GMRES/FGMRES solver
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Academic model problems

Numerical behaviour on diffusion equations

Parallel numerical scalability on diffusion equations

Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Summary on the model problems

Experiments on large 3D academic model problems

Sparse preconditioner

@ For reasonable choice of the dropping parameter £ the convergence is marginally affected
@ The sparse preconditioner outperforms the dense one in time and memory

Mixed preconditioner

@ Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision
@ Mixed preconditioner does not delay that much the convergence

On the parallel scalability

@ Although these preconditioners are local, possibly not numerically scalable, they exhibit a
fairly good parallel time scalability (possible fix for elliptic problems)

@ The trends that have been observed on this choice of model problem have been observed on
many other problems
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Structural mechanics problems
Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications Exploiting 2-levels of parallelism

Outline

e Experiments on large 3D structural mechanics applications
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Structural mechanics problems
Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications Exploiting 2-levels of parallelism

Indefinite systems in structural mechanics

Fuselage of 6.5 Mdof Rouet of 1.3 Mdof

@ Composed of its skin, stringers and @ A 90 degrees sector of an impeller
frames @ |Itis composed of 3D volume elements
@ Midlinn shell elements are used @ Cyclic conditions are added using
@ Each node has 6 unknowns elements with 3 Lagranges multipliers
@ A force perpendicular to the axis is @ Angular velocities are introduced
applied )
v
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Structural mechanics problems
Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications X| g 2-levels of parallelism

Partitioning strategies

Main characteristics

@ Linear elasticity equations with constraints such as rigid bodies and cyclic conditions
@ Lagrange multipliers => symmetric indefinite augmented systems

Numerical difficulties |

@ The local matrix associated with the internal unknowns might be structurally singular
@ Fix Lagrange multipliers difficulties
@ Idea: enforce the Lagrange multipliers to be moved into the interface

V.

Performance difficulties |

@ Needs to balance and optimize the distribution of the Lagrange multipliers among the
balanced subdomains

@ Apply constraint (weights) to the partitioner (dual mesh graph)

N
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Structural mechani

Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications Exploiting

els of parallelism

Numerical behaviour of sparse preconditioners

Fuselage 6.5Mdof Fuselage 6.5Mdof
T
o Direct calculation 10° '
10 Dense calculation '
'
107 107 H Direct calculation
' Dense calculation
' 5 107
H - - - Sparse with £=5.10
> Sparse with £=10"°
Init

- - - Sparse with £=5.10°

it 120 0 40 80 120 160 200 240 280 320 360 400 440 480
iter Time(sec)
y

@ Fuselage problem of 6.5 Mdof dof mapped on 16 processors

@ The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)
@ In term of global computing time, the sparse algorithm is about twice faster

@ The attainable accuracy of the hybrid solver is comparable to the one computed with the
direct solver
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Structural mechani
Experiments on large 3D structural mechanics applications

Numerical behaviour on structural mechanics problems
Exploiting

els of parallelism

Numerical behaviour on sparse preconditioners

Convergence histo

Rouet 1,3Mdof Rouet 1.3 Mdof
N Direct calculation o H
10 Dense calculation 10 g -
- - - Sparse with £=10"% ! | '
Sparse with £=5.10"° T .
107 - - - Sparse with £=5.10"" 107 [ N
o \ Direct calculation
' ' \ Dense calculation
A — \ \ | = = - sparse with &=10
Init ' \ -
' ! Sparse with £=5.10
| ' | - - - sparse with £=5.10"°|
! \
' l
'
! |
w't N N . 10° R LR I _
A
H I
107 1070
o 40 120 160 200 40 80 120 160 200 240 280 320 360
#iter Time(sec)
v V.
@ Rouet problem of 1.3Mdof dof mapped on 16 processors

@ The sparsified variant outperforms its dense counterpart

@ The hybrid techniques solution is comparable to the one obtain with the direct solver
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Structural mechani
Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications Exploiting els of parallelism

Performance on indefinite systems

Numerical scalability Parallel performance |

Fuselage 6,5Mdof Fuselage 6,5Mdof
—A— Direct calculation
Qa0 —A— Hybrid-Dense calculation
600 —A— Hybrid-Sparse with &=
220} Hybrid-Sparse with &
500 —A— Hybrid-Sparse with &=
2000
2 P
S 180 § 400
1 )
g T
2 160 £
2 £ 300F
b =
140+
S —&— Hybrid-Dense calculation 2001
120F A ~A- Hybrid-Sparse with &
- = 100+
soob & Hybrid-Sparse with &
~A- Hybrid-Sparse with £=5.10"°|
0 s 16 32 64 0 8 16 32 64
# proc # proc
v v

@ Fixed problem size: increasing the # of subdomains = an increase in the # of iterations
@ Attractive speedups can be observed

@ The sparsified variant the most efficient (CPU, memory)
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Structural mechani
Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications Exploiting els of parallelism

Performance on indefinite systems

Numerical scalability Parallel performance |

Rouet 1.3Mdof Rouet 1.3Mdof
A —&— Direct calculation
. asob —A— Hybrid-Dense calculation
1801 Pl —— Hybrid-Sparse with £=5.10"°|
o 4001 Hybrid-Sparse with

160 - A a0l —A— Hybrid-Sparse with &=
2 140 < 3001
s g
B & 2501
£ o g
#* F 200

1001 A

@
8

—A— Hybrid-Dense calculation
~A- Hybrid-Sparse with £=5.10""]

5
8

Hybrid-Sparse with

a
g

~A- Hybrid-Sparse with £=5.10"7]

0 8 16 32 64 32 64
# proc # proc

y v
@ Fixed problem size: increasing the # of subdomains = a linear (slight??) growth in the # of

o
©
5

iterations
@ Very attractive speedups can be observed
@ The sparsified variant is of great interest

@ Compared with the sparse direct solver, the hybrid approach gives always the fastest scheme

38/54 Parallel Hybrid Method for Large Sparse Linear Systel



Structural mechanics problems
Numerical behaviour on structural mechanics problems
Exploiting 2-levels of parallelism

Experiments on large 3D structural mechanics applications

Summary on the structural mechanics problems

Characteristics of the hybrid approach

@ It was observed that the mixed precision algorithm behaves very closely to the 64-bit
algorithm
@ The sparse preconditioner represents a significant saving in computing ressources

@ Relax the stopping criterion when embeded into a nonlinear solver

@ The number of iterations increases when increasing the number of subdomains
@ Large amount of memory storage is required for such engineering applications

One of the solutions

@ Exploit 2-levels of parallelism
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Structural mechanics problems
Numerical behaviour on structural mechanics problems
Experiments on large 3D structural mechanics applications Exploiting 2-levels of parallelism

Exploiting 2-levels of parallelism - motivations

“The numerical improvement” ‘

@ Classical parallel implementations (1-level ) of DD assign one subdomain per processor

@ Parallelizing means increasing the number of subdomains
@ Increasing the number of subdomains often leads to increasing the number of iterations
(*]

To avoid this, one can instead of increasing the number of subdomains, keeping it small while
handling each subdomain by more than one processor introducing 2-levels of parallelism

“The parallel performance improvement” |

@ Large 3D systems often require a huge amount of data storage

@ On SMP node: classical 1-level parallel can only use a subset of the available processors
@ Thus some processors are “wasted”, as they are “idle” during the computation
o

The “idle” processors might contribute to the computation and the simulation runs closer to
the peak of per-node performance by using 2-levels of parallelism
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Algebraic Additi a 0 Structural mechanics problems
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Numerical improvement benefits

Fuselage of

# total Algo # # processors/ # iterative
processors subdomains subdomain iter loop time

16 processors 1-level parallel 16 1 147 77.9

2-level parallel 8 2 98 51.4

1-level parallel 32 1 176 58.1

32 processors | 2-level parallel 16 2 147 44.8

2-level parallel 8 4 98 325

1-level parallel 64 1 226 54.2

64 processors 2-level parallel 32 2 176 40.1

2-level parallel 16 4 147 31.3

2-level parallel 8 8 98 27.4

@ Reduce the number of subdomains = reduce the number of iterations

@ Though the subdomain size increases, the time of the iterative loop decreases as:

- The number of iterations decreases
- Each subdomain is handled in parallel
- All the iterative kernels are efficiently computed in parallel

@ The speedup factors of the iterative loop vary from 1.3 to 1.8
@ Very attractive especially when the convergence rate depends on the # of subdomains
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Parallel performance benefits
Fuselage of 6.5Md

# subdomains Algo proc/subdom Precond # iterative Total
or SMP node or “working” setup time iter loop time time
1-level 1 208.0 94.1 525.1
8 2 124.6 98 51.5 399.1
2level Z 70.8 325 3264
1-level 1 89.0 77.9 217.2
16 2 52.7 147 44.8 147.8
Zlevel Z 304 313 T12.0
1-level 1 30.0 58.1 124.1
32 2 20.4 176 40.8 97.2
Zlevel z 13.0 227 717
@ When running large simulations that need all the memory available on the nodes
@ The 1-level parallel algo “wastes” ressource performance (it lose 48 “idle” processors on 16
SMP)
@ The 2-level parallel algo exploits the computing facilities of the remaining “idle” processors
@ The 2-level parallel algo runs closer to the peak of per-node performance
@ The preconditioner setup time benefits vary from 1.5 to 3
@ The speedup factors of the iterative loop vary from 1.8 to 2.7
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Outline

o Experiments on large 3D seismic modelling applications
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Seismic modelling applications

Solve the Helmholtz equation
20 x 20 x 4.65km®
4 grid points per minimum wavelength

PML (Perfectly-Matched Layer)
[J.P.Berenger - 94]

5.6 Mdof at 7 Hz

© 0660660

Main characteristics

@ Frequency-domain full-waveform tomography [F.Sourbier, S.Operto, J.Virieux - 08]
The inversion of a few frequencies are enough to build velocity models

Multisource frequency-domain wave modeling requires the solution of multiple RHS
Traditional method of choice for solving these systems relies on sparse direct solvers

© 0660660

To overcome this limitation, the goal is to develop efficient hybrid methods for large 3D
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Comments on the stopping criterion

= 10", mp = 1072, = 1072,

Hybrid solver for 2 x 2 subdomains on the 2D corner-edge model.
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Performance on unsymmetric complex systems

3D SEG/EAGE Overthrust model at 7Hz |

[ subdomains [ Memory T Initial- | Precond- # of Time per [ Total

EN size [ interface [[ AT(GB) | ization | itioner | iterations RHS time
50 | 54 x 54 x 31 | 11056 191.6 614 497.1 81 67.8 1178.9
72 | 45 x 45 x 31 8833 179.3 334 273.5 103 73.9 681.4
96 |45 x 33 x 31 7405 167.8 184 153.8 119 61.1 398.9
98 |38 x 38 x 31 7216 169.7 189 141.5 148 66.7 397.2
192 | 33 x 33 x 21 5578 147.4 90 78.2 235 85.8 254.0

@ Complex shifted variant of the Algebraic Additive Schwarz preconditioner is used
@ Increasing the number of subdomains reduces the memory requirement for hybrid solver
@ Increasing the number of subdomains reduces the memory requirement for direct solver
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Numerical improvement benefits

[ Frequency equal to 7 Hz |

Available Algo # Processors/ | # | Iterative | Time per
processors subdomains | subdomain | iter loop RHS
1-level parallel 192 1 235 79.0 85.8
= 200 processors | 2-level parallel 96 2 119 38.2 45.1
2-level parallel 50 4 81 28.1 35.5
1-level parallel 96 1 119 57.0 61.1
= 100 processors | 1-level parallel 98 1 148 66.7 66.7
2-level parallel 50 2 81 39.1 45.1

@ Reduce the number of subdomains = reduce the number of iterations

@ Though the subdomain size increases, the time of the iterative loop decreases as:
@ The speedup factor of one RHS simulation vary from 1.3 to 2.5

@ \Very attractive approach for multiple right-hand sides simulations
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Parallel performance benefits

2-levels of parallelism on 3D Overthrust SEG/EAGE ‘
# subdomains Algo proc/subdom Precond # iterative | Time per | Total
or “working” setup time | iter | loop time RHS time
1-level 1 497.1 64.4 67.8 1178.9
50 2-level 2 262.4 81 39.1 45.1 854.5
4 135.3 28.1 355 419.8
81 [ I-level | 1 [[ 2563 [ g9 |_736 | 774 ] 5577
[ZTevel | 2 1692 | [ 537 | 572 | 4314
96 [ 1-level ] 1 [[ 1538 ] 119 [ 570 [ 611 ] 3989
[ 2-Tevel | 2 [ 812 | [ 382 [ 451 ]| 299.3
@ The preconditioner setup time benefits vary from 1.5 to 3.6
@ One RHS simulation time is improved by a factor of 1.3 to 1.7
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Perspectives

PHyLeasS project |

@ Reduce the preconditioner cost

@ Study alternative strategies to get sparse approximation of the local Schur

@ Special attention would have to be paid to ensure a good work balance strategy )

Solstice project |

@ Study the behavior of the preconditioner on more general problems
@ Extend this algebraic techniques to general sparse matrices

\,
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plLU-based sparse approximation

3D Poisson problem (# PCG iterations)

5

=AD

—Ary, AITIilAli [

# subdomains = # processors

[ subdomain grid size

[
[

27 | 64 | 125 | 216 | 343 | 512 | 729 ] 1000 {

Ma—6a 6 | 23 | 25 29 32 35 39 a2
20 x 20 x 20 | Msp_ea 16 | 23 | 26 31 34 39 43 46
MgLeas 22 | 29 | 32 39 43 48 52 58

3D heterogeneous diffusion (# PCG iterations)

.

# subdomains = # processors

l

[
[

[ subdomain grid size 27 [ 64 [ 125 [ 216 | 343 [ 512 [ 729 [ 1000 |
Md—64 22 32 34 41 45 55 60 67
20 x 20 x 20 Msp—64 23 34 39 47 49 62 70 76
MoLeas 27 37 42 51 54 68 75 85

Memory saving (Gb)

| N

subdomain size 8 kdof 16 kdof 27 kdof 43 kdof 64 kdof 91 kdof
Explicit Schur 0.13 0.34 0.74 1.40 2.34 4.18
plLUt 0.02 0.04 0.09 0.14 0.29 0.47

.
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PHyLeaS next steps

@ More experiments

@ Study the effect of the interior ordering on numerical performance (quality of Schur
approximation)

@ Study variants of ILU to approximate the Schur complement (ILU-pack)joint work with M.
Bollhoefer
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Black-box hybrid method based on algebraic approach

itioning general matrix into N blocks

g 888288

V.

Preliminary results |

# blocks

l Matrix [ Preconditioner 8 | 16 | 32 | 64 | 9
[ name [ size ] nnz |
bcsstk18 11,948 149,090 Block Jacobi 88 135 171 192 208
' Additive Schwarz 26 42 60 83 86
nasasrb 54.870 1,366,097 Block Jacobi 72 189 649 885 =
' ' Additive Schwarz 42 97 | 148 | 165 | 251
ex11 16.614 1,096,948 Block Jacobi 266 656 931 = =
' Additive Schwarz 17 35 43 57
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Consumming energy during the thesis

CPU rs consuming and CO, emission

@ During this thesis more than 11000 runs on HPC machine:

Consumption Pollution
-~ = -— -
@ 173068 h on Blue Gene @ CERFACS==p 1436 KW @ 100 Kgof CO, using nuclear energy
@ 10034hon |BM JS21 @ CERFACS™ 1034Kw [ 2870 Kw | ©1435Kgof CO,usingfuel energy Europe
@ 3887hon CRAY XD1 @ CERFACS=$ 400 Kw @ 3444 K g of CO, using carbon energy
@ 312Kgof CO, using nuclear energy
@ 85032 h on SYSTEM X @ Virg Tech == 8928 Kw } 8928 Kw | ©4464Kgof CO,using fuel energy USA

9 10713K g of CO, using carbon energy

Thank you for your attention
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