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Motivations

Ax = b

Solution of very Large/Huge ill-conditioned sparse linear systems Ax = b

Such problems can require thousands of CPU-hours and many
Gigabytes of memory

Direct solvers:
- Robust and usually do not fail
- Memory and computational costs grow nonlinearly

Iterative solvers:
- Reduce memory requirements
- They may fail to converge
- Typically implemented with preconditioning to accelerate convergence

In an effort to reduce these requirements, a parallel mechanism for
combining advantages of those solvers is needed
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Goal

Develop robust scalable parallel hybrid direct/iterative linear solvers

Exploit the efficiency and robustness of the sparse direct solvers

Develop robust parallel preconditioners for iterative solvers

Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

Natural approach for PDE’s

Extend to general sparse matrices

Partition the problem into subdomains,
subgraphs

Use a direct solver on the subdomains

Robust preconditioned iterative solver
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Overlapping Domain Decomposition
Classical Additive Schwarz preconditioners

Ω1

Ω2
δ

Goal: solve linear system Ax = b

Use iterative method

Apply the preconditioner at each step

The convergence rate deteriorates as the
number of subdomains increases

A =

0@ A1,1 A1,δ

Aδ,1 Aδ,δ Aδ,2
Aδ,2 A2,2

1A =⇒Mδ
AS =

0@ A1,1 A1,δ
−1

Aδ,1 Aδ,δ Aδ,2
−1

Aδ,2 A2,2

1A

Classical Additive Schwarz preconditioners N subdomains case

Mδ
AS =

NX
i=1

“
Rδ

i

”T “
Aδ

i

”−1
Rδ

i
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Non-overlapping Domain Decomposition
Schur complement reduced system

Ω1

Ω2
Γ

Goal: solve linear system Ax = b

Apply partially Gaussian elimination

Solve the reduced system SxΓ = f

Then solve Ai xi = bi −Ai,ΓxΓ

A x = b =⇒0@ A1,1 0 A1,Γ

0 A2,2 A2,Γ

AΓ,1 AΓ,2 AΓ,Γ

1A0@x1
x2
xΓ

1A =

0@b1
b2
bΓ

1A =⇒

0BBBB@
I 0 0

0 I 0

AΓ,1A−1
1,1 AΓ,2A−1

2,2 I

1CCCCA
0BBBBB@
A1,1 0 A1,Γ

0 A2,2 A2,Γ

0 0 AΓ,Γ −
2X

i=1

AΓ,iA−1
i,i Ai,Γ

1CCCCCA

0BBBBB@
x1

x2

xΓ

1CCCCCA =

0BBBBB@
b1

b2

bΓ

1CCCCCA
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Non-overlapping Domain Decomposition
Schur complement reduced system

Ω1

Ω2
Γ

Goal: solve linear system Ax = b

Apply partially Gaussian elimination

Solve the reduced system SxΓ = f

Then solve Ai xi = bi −Ai,ΓxΓ

0BBB@
A1,1 0 A1,Γ

0 A2,2 A2,Γ

0 0 S

1CCCA
0BBB@

x1

x2

xΓ

1CCCA =

0BBBBB@
b1

b2

bΓ −
2X

i=1

AΓ,iA−1
i,i bi

1CCCCCA
Solve Ax = b =⇒ solve the reduced system SxΓ = f =⇒ then solve Ai xi = bi −Ai,ΓxΓ

where S = AΓ,Γ −
2X

i=1

AΓ,iA−1
i,i Ai,Γ ,

and f = bΓ −
2X

i=1

AΓ,iA−1
i,i bi .
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Parallel implementation for solving Ax = b

Each subdomain A(i) is handled by one processor

A(i) ≡
„
AIiIi AIi Γi

AIi Γi A(i)
ΓΓ

«

Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

S(i) = A(i)
ΓΓ −AΓiIiA

−1
IiIi
AIi Γi

The reduced system SxΓ = f is solved using a distributed Krylov solver
- One matrix vector product per iteration each processor computes S(i)(x (i)

Γ )k = (y (i))k

- One local preconditioner apply (M(i))(z(i))k = (r (i))k

- Local neighbor-neighbor communication per iteration
- Global reduction (dot products)

Compute simultaneously the solution for the interior unknowns

AIiIi xIi = bIi −AIi Γi xΓi
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Nonoverlapping Domain Decomposition
Schur complement reduced system

k l m n

Ωι

Ωι+1

Ωι+2
Γ = k ∪ ` ∪m ∪ n

Distributed Schur complement
Ωιz }| { 

S(ι)
kk Sk`

S`k S(ι)
``

! Ωι+1z }| { 
S(ι+1)

`` S`m

Sm` S(ι+1)
mm

! Ωι+2z }| { 
S(ι+2)

mm Smn

Snm S(ι+2)
nn

!

In an assembled form: S`` = S(ι)
`` + S(ι+1)

`` =⇒ S`` =
X
ι∈adj

S(ι)
``
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Structure of the Local Schur complement
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Non-overlapping Domain Decomposition
Algebraic Additive Schwarz preconditioner [ L.Carvalho, L.Giraud, G.Meurant - 01]

S =
NX

i=1

RT
Γi
S(i)RΓi

S =

0BBBBB@
. . .

Skk Sk`

S`k S`` S`m
Sm` Smm Smn

Snm Snn

1CCCCCA =⇒M =

0BBBBB@
. . .

Skk Sk`
−1

S`k S`` S`m
−1

Sm` Smm Smn
Snm Snn

1CCCCCA
M =

NX
i=1

RT
Γi

(S̄(i))−1RΓi

where S̄(i) is obtained from S(i)

S(i) =

 
S(ι)

kk Sk`

S`k S(ι)
``

!
| {z } =⇒ S̄(i) =

„
Skk Sk`

S`k S``

«
| {z }

local Schur local assembled Schur
↘ ↗X
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S(ι)
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Algebraic Additive Schwarz preconditioner

Main characteristics in 2D [ PhD of J. C. Rioual - 02]

The ratio interface/interior is small

Does not require large amount of memory to store the preconditioner

Computation/application of the preconditioner are fast

They consist in a call to LAPACK/BLAS-2 kernels

Main characteristics in 3D
The ratio interface/interior is large

The storage of the preconditioner might not be affordable

The computation/application cost of the preconditioner might penalize the method

Need cheaper Algebraic Additive Schwarz form of the preconditioner
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What tricks exist to construct cheaper preconditioners

Sparsification strategy

Sparsify the preconditioner by dropping the smallest entries

bsk` =


s̄k` if s̄k` ≥ ξ(|s̄kk | + |s̄``|)
0 else

Good in many PDE contexts

Remarks: This sparse strategy was originally developed for SPD matrices

Mixed arithmetic strategy

Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?

Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!

Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozložnı́k, Z.Strakoš - 06]

Idea: To overcome this limitation we use FGMRES [Y.Saad - 93]
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Computational framework
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Computational framework

Target computer

IBM SP4 @ CINES

Cray XD1 @ CERFACS

IBM JS21 @ CERFACS

Blue Gene/L @ CERFACS

IBM SP4 @ IDRIS

System X @ VIRGINIA TECH

System X @ VIRGINIA TECH

2200 processors

Apple Xserve G5

2-Way SMP

running at 2.3 GHz

4 Gbytes/node

latency of 6.1 µs

Blue Gene/L @ CERFACS

2048 processors

PowerPC 440s

2-Way SMP

running at 700 MHz

1 Gbytes/node

latency of 1.3 - 10 µs

IBM JS21 @ CERFACS

216 processors

PowerPC 970MP

4-Way SMP

running at 2.5 GHz

8 Gbytes/node

latency of 3.2 µs
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Software framework

Local direct solver : MUMPS [P.Amestoy, I.Duff, J.Koster, J.Y.L’Excellent - 01]

Main features
- Parallel distributed multifrontal solver (F90, MPI)
- Symmetric and Unsymmetric factorizations
- Element entry matrices, distributed matrices
- Efficient Schur complement calculation
- Iterative refinement and backward error analysis

Public domain: new version 4.7.3
http://mumps.enseeiht.fr/

Iterative solver : KRYLOV

Symmetric positive definite
- Parallel distributed Conjugate gradient solver [V.Frayssé, L.Giraud - 00]

Unymmetric or undefinite symmetric
- Parallel distributed GMRES/FGMRES solver [V.Frayssé, L.Giraud, S.Gratton - 97]

Public domain:
http://www.cerfacs.fr/algor/Softs/
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Academic model problems
Problem patterns

Diffusion equation (ε = 1 and v = 0)
−εdiv(K .∇u) + v .∇u = f in Ω,

u = 0 on ∂Ω.

Classical Poisson problems

Heterogeneous problems

Anisotropic-heterogeneous problems

Convection dominated term
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Numerical behaviour of sparse preconditioners

Convergence history of PCG
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3D heterogeneous diffusion problem

 

 

Dense calculation
Sparse with ξ=10−5
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Time history of PCG
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3D heterogeneous diffusion problem

 

 

Dense calculation
Sparse with ξ=10−5

Sparse with ξ=10−4

Sparse with ξ=10−3

Sparse with ξ=10−2

3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

For (ξ ≪) the convergence is marginally affected while the memory saving is

significant 15%

For (ξ ≫) a lot of resources are saved but the convergence becomes very poor 1%

Even though they require more iterations, the sparsified variants converge faster as the time

per iteration is smaller and the setup of the preconditioner is cheaper.
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Numerical behaviour of mixed preconditioners

Convergence history of PCG
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64−bit calculation
mixed arithmetic calculation
32−bit calculation

Time history of PCG
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64−bit calculation
mixed arithmetic calculation
32−bit calculation

3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

64-bit and mixed computation both attained an accuracy at the level of 64-bit machine

precision

The number of iterations slightly increases

The mixed approach is the fastest, down to an accuracy that is problem dependent

22/54 Parallel Hybrid Method for Large Sparse Linear Systems



Background
Algebraic Additive Schwarz preconditioner

Experiments on large 3D academic model problems
Experiments on large 3D structural mechanics applications

Experiments on large 3D seismic modelling applications

Academic model problems
Numerical behaviour on diffusion equations
Parallel numerical scalability on diffusion equations
Numerical behaviour on convection-diffusion equations
Parallel numerical scalability on convection-diffusion equations

Scaled scalability on massively parallel platforms
Numerical scalability
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Parallel performance
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Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4

     5.3.106    15.106  22.106     31.106     43.106          55.106           74.106

The solved problem size varies from 2.7 up to 74 Mdof

Control the grow in the # of iterations by introducing a coarse space correction

The computing time increases slightly when increasing # sub-domains

Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

The trend is similar for all variants of the preconditioners using CG Krylov solver
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The solved problem size varies from 2.7 up to 74 Mdof

Control the grow in the # of iterations by introducing a coarse space correction

The computing time increases slightly when increasing # sub-domains

Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

The trend is similar for all variants of the preconditioners using CG Krylov solver
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Numerical alternative: numerical scalability in 3D
Domain based coarse space : M = MAS + RT

OA−1
O R0 where A0 = R0SRT

O

“As many” dof in the coarse space as sub-domains
[Carvalho, Giraud, Le Tallec, 01]

Partition of unity : RT
0 simplest constant interpolation

2D Heterogenous diffusion
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Academic model problems
Problem patterns
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Convection-diffusion equation
−εdiv(K .∇u) + v .∇u = f in Ω,

u = 0 on ∂Ω.

Classical Poisson problems

Heterogeneous problems

Anisotropic-heterogeneous problems
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Numerical behaviour of sparse preconditioners

Convergence history of GMRES
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Dense calculation
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Time history of GMRES
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Dense calculation
Sparse with ξ=10−5

Sparse with ξ=10−4

Sparse with ξ=10−3

Sparse with ξ=10−2

3D heterogeneous convection-diffusion problem of 27 Mdof mapped on 1000 processors

For (ξ ≪) the convergence is marginally affected while the memory saving is significant

For (ξ ≫) a lot of resources are saved but the convergence becomes very poor

Even though they require more iterations, the sparsified variants converge faster as the time

per iteration is smaller and the setup of the preconditioner is cheaper.
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Numerical behaviour of mixed preconditioners

Convergence history of FGMRES
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64−bit calculation
mixed arithmetic calculation

Time history of FGMRES
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64−bit calculation
mixed arithmetic calculation

3D heterogeneous convection-diffusion problem of 27 Mdof mapped on 1000 processors

64-bit and mixed computation both attained an accuracy at the level of 64-bit machine

precision using the FGMRES solver

The mixed arithmetic implementation compares favorably with the 64-bit one.

The saving in computing time of the mixed approach is less distinctive due the platform
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3D convection-diffusion problems of 27 Mdof dof mapped on 1000 processors

Increasing the convection term makes harder the problem to solve
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Scaled scalability on massively parallel platforms
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The mixed preconditioner performs very similarly

The sparser the preconditioner, the larger gap in the number of iterations is

Even if the number of iterations to converge increases as the number of subdomains

increases, the parallel scalability of the preconditioners remains acceptable

The trend is similar for all variants of the preconditioner using GMRES/FGMRES solver
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Summary on the model problems [L.Giraud, A.Haidar, L.T.Watson - 08]

Sparse preconditioner
For reasonable choice of the dropping parameter ξ the convergence is marginally affected

The sparse preconditioner outperforms the dense one in time and memory

Mixed preconditioner
Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision

Mixed preconditioner does not delay that much the convergence

On the parallel scalability
Although these preconditioners are local, possibly not numerically scalable, they exhibit a
fairly good parallel time scalability (possible fix for elliptic problems)

The trends that have been observed on this choice of model problem have been observed on
many other problems
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Indefinite systems in structural mechanics S.Pralet, SAMTECH

Fuselage of 6.5 Mdof

Composed of its skin, stringers and
frames

Midlinn shell elements are used

Each node has 6 unknowns

A force perpendicular to the axis is
applied

Rouet of 1.3 Mdof

A 90 degrees sector of an impeller

It is composed of 3D volume elements

Cyclic conditions are added using
elements with 3 Lagranges multipliers

Angular velocities are introduced

33/54 Parallel Hybrid Method for Large Sparse Linear Systems



Background
Algebraic Additive Schwarz preconditioner

Experiments on large 3D academic model problems
Experiments on large 3D structural mechanics applications

Experiments on large 3D seismic modelling applications

Structural mechanics problems
Numerical behaviour on structural mechanics problems
Exploiting 2-levels of parallelism

Partitioning strategies

Main characteristics
Linear elasticity equations with constraints such as rigid bodies and cyclic conditions

Lagrange multipliers =⇒ symmetric indefinite augmented systems

Numerical difficulties
The local matrix associated with the internal unknowns might be structurally singular

Fix Lagrange multipliers difficulties

Idea: enforce the Lagrange multipliers to be moved into the interface

Performance difficulties
Needs to balance and optimize the distribution of the Lagrange multipliers among the
balanced subdomains

Apply constraint (weights) to the partitioner (dual mesh graph)
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Numerical behaviour of sparse preconditioners

Convergence history
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Fuselage problem of 6.5 Mdof dof mapped on 16 processors

The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)

In term of global computing time, the sparse algorithm is about twice faster

The attainable accuracy of the hybrid solver is comparable to the one computed with the

direct solver
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Numerical behaviour on sparse preconditioners

Convergence history
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Init

Rouet problem of 1.3Mdof dof mapped on 16 processors

The sparsified variant outperforms its dense counterpart

The hybrid techniques solution is comparable to the one obtain with the direct solver
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Performance on indefinite systems

Numerical scalability
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Hybrid−Dense calculation
Hybrid−Sparse with ξ=5.10−7
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Hybrid−Sparse with ξ=5.10−6

Fixed problem size: increasing the # of subdomains =⇒ an increase in the # of iterations

Attractive speedups can be observed

The sparsified variant the most efficient (CPU, memory)
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Performance on indefinite systems
Numerical scalability
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Direct calculation
Hybrid−Dense calculation
Hybrid−Sparse with ξ=5.10−6

Hybrid−Sparse with ξ=10−5

Hybrid−Sparse with ξ=5.10−5

Fixed problem size: increasing the # of subdomains =⇒ a linear (slight??) growth in the # of

iterations

Very attractive speedups can be observed

The sparsified variant is of great interest

Compared with the sparse direct solver, the hybrid approach gives always the fastest scheme
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Summary on the structural mechanics problems

Characteristics of the hybrid approach
It was observed that the mixed precision algorithm behaves very closely to the 64-bit
algorithm

The sparse preconditioner represents a significant saving in computing ressources

Relax the stopping criterion when embeded into a nonlinear solver

Difficulties
The number of iterations increases when increasing the number of subdomains

Large amount of memory storage is required for such engineering applications

One of the solutions
Exploit 2-levels of parallelism
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Exploiting 2-levels of parallelism - motivations

“The numerical improvement”
Classical parallel implementations (1-level ) of DD assign one subdomain per processor

Parallelizing means increasing the number of subdomains

Increasing the number of subdomains often leads to increasing the number of iterations

To avoid this, one can instead of increasing the number of subdomains, keeping it small while
handling each subdomain by more than one processor introducing 2-levels of parallelism

“The parallel performance improvement”
Large 3D systems often require a huge amount of data storage

On SMP node: classical 1-level parallel can only use a subset of the available processors

Thus some processors are “wasted”, as they are “idle” during the computation

The “idle” processors might contribute to the computation and the simulation runs closer to
the peak of per-node performance by using 2-levels of parallelism
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Numerical improvement benefits
Fuselage of 6.5Mdof

# total Algo # # processors/ # iterative
processors subdomains subdomain iter loop time

1-level parallel 16 1 147 77.916 processors
2-level parallel 8 2 98 51.4

1-level parallel 32 1 176 58.1
32 processors 2-level parallel 16 2 147 44.8

2-level parallel 8 4 98 32.5

1-level parallel 64 1 226 54.2
2-level parallel 32 2 176 40.164 processors
2-level parallel 16 4 147 31.3
2-level parallel 8 8 98 27.4

Reduce the number of subdomains =⇒ reduce the number of iterations

Though the subdomain size increases, the time of the iterative loop decreases as:
- The number of iterations decreases
- Each subdomain is handled in parallel
- All the iterative kernels are efficiently computed in parallel

The speedup factors of the iterative loop vary from 1.3 to 1.8

Very attractive especially when the convergence rate depends on the # of subdomains
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Parallel performance benefits
Fuselage of 6.5Mdof

# subdomains Algo proc/subdom Precond # iterative Total
or SMP node or “working” setup time iter loop time time

1-level 1 208.0 94.1 525.1
8 2 124.6 98 51.5 399.12-level

4 70.8 32.5 326.4

1-level 1 89.0 77.9 217.2
16 2 52.7 147 44.8 147.82-level

4 30.4 31.3 112.0

1-level 1 30.0 58.1 124.1
32 2 20.4 176 40.8 97.22-level

4 13.0 22.7 71.7

When running large simulations that need all the memory available on the nodes

The 1-level parallel algo “wastes” ressource performance (it lose 48 “idle” processors on 16
SMP)

The 2-level parallel algo exploits the computing facilities of the remaining “idle” processors

The 2-level parallel algo runs closer to the peak of per-node performance

The preconditioner setup time benefits vary from 1.5 to 3

The speedup factors of the iterative loop vary from 1.8 to 2.7
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Seismic modelling applications SEISCOPE consortium

3D SEG/EAGE Overthrust model

Solve the Helmholtz equation

20× 20× 4.65 km3

4 grid points per minimum wavelength

PML (Perfectly-Matched Layer)
[J.P.Berenger - 94]

5.6 Mdof at 7 Hz

Main characteristics
Frequency-domain full-waveform tomography [F.Sourbier, S.Operto, J.Virieux - 08]

The inversion of a few frequencies are enough to build velocity models

Multisource frequency-domain wave modeling requires the solution of multiple RHS

Traditional method of choice for solving these systems relies on sparse direct solvers

To overcome this limitation, the goal is to develop efficient hybrid methods for large 3D
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Comments on the stopping criterion

ηb = 10−1. ηb = 10−2. ηb = 10−3.
Hybrid solver for 2× 2 subdomains on the 2D corner-edge model.

45/54 Parallel Hybrid Method for Large Sparse Linear Systems



Background
Algebraic Additive Schwarz preconditioner

Experiments on large 3D academic model problems
Experiments on large 3D structural mechanics applications

Experiments on large 3D seismic modelling applications

Seismic modelling applications
Parallel and numerical performance on seismic problems
Exploiting 2-levels of parallelism

Performance on unsymmetric complex systems

3D SEG/EAGE Overthrust model at 7Hz
subdomains Memory Initial- Precond- # of Time per Total

# size interface All (GB) ization itioner iterations RHS time

50 54× 54× 31 11056 191.6 614 497.1 81 67.8 1178.9
72 45× 45× 31 8833 179.3 334 273.5 103 73.9 681.4
96 45× 33× 31 7405 167.8 184 153.8 119 61.1 398.9
98 38× 38× 31 7216 169.7 189 141.5 148 66.7 397.2

192 33× 33× 21 5578 147.4 90 78.2 235 85.8 254.0

Complex shifted variant of the Algebraic Additive Schwarz preconditioner is used

Increasing the number of subdomains reduces the memory requirement for hybrid solver

Increasing the number of subdomains reduces the memory requirement for direct solver
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Numerical improvement benefits

2-levels of parallelism on 3D Overthrust SEG/EAGE

Frequency equal to 7 Hz

Available Algo # Processors/ # Iterative Time per
processors subdomains subdomain iter loop RHS

1-level parallel 192 1 235 79.0 85.8
u 200 processors 2-level parallel 96 2 119 38.2 45.1

2-level parallel 50 4 81 28.1 35.5

1-level parallel 96 1 119 57.0 61.1
u 100 processors 1-level parallel 98 1 148 66.7 66.7

2-level parallel 50 2 81 39.1 45.1

Reduce the number of subdomains =⇒ reduce the number of iterations

Though the subdomain size increases, the time of the iterative loop decreases as:

The speedup factor of one RHS simulation vary from 1.3 to 2.5

Very attractive approach for multiple right-hand sides simulations
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Parallel performance benefits

2-levels of parallelism on 3D Overthrust SEG/EAGE

# subdomains Algo proc/subdom Precond # iterative Time per Total
or “working” setup time iter loop time RHS time

1-level 1 497.1 64.4 67.8 1178.9
50 2 262.4 81 39.1 45.1 854.52-level

4 135.3 28.1 35.5 419.8

1-level 1 256.3 73.6 77.4 557.781
2-level 2 169.2

109
53.7 57.2 431.4

1-level 1 153.8 57.0 61.1 398.996
2-level 2 81.2

119
38.2 45.1 299.3

The preconditioner setup time benefits vary from 1.5 to 3.6

One RHS simulation time is improved by a factor of 1.3 to 1.7
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Perspectives

PHyLeaS project International INRIA “Associate Team”

Reduce the preconditioner cost

Study alternative strategies to get sparse approximation of the local Schur

Special attention would have to be paid to ensure a good work balance strategy

Solstice project ANR-06-CIS6- 010

Study the behavior of the preconditioner on more general problems

Extend this algebraic techniques to general sparse matrices
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pILU-based sparse approximation joint work with Y. Saad

S(i) = A(i)
ΓiΓi
− AΓi Ii A

−1
Ii Ii

AIiΓi

3D Poisson problem (# PCG iterations)
# subdomains ≡ # processors

subdomain grid size 27 64 125 216 343 512 729 1000

Md−64 16 23 25 29 32 35 39 42
20× 20× 20 Msp−64 16 23 26 31 34 39 43 46

MφLeaS 22 29 32 39 43 48 52 58

3D heterogeneous diffusion (# PCG iterations)
# subdomains ≡ # processors

subdomain grid size 27 64 125 216 343 512 729 1000

Md−64 22 32 34 41 45 55 60 67
20× 20× 20 Msp−64 23 34 39 47 49 62 70 76

MφLeaS 27 37 42 51 54 68 75 85

Memory saving (Gb)

subdomain size 8 kdof 16 kdof 27 kdof 43 kdof 64 kdof 91 kdof
Explicit Schur 0.13 0.34 0.74 1.40 2.34 4.18

pILUt 0.02 0.04 0.09 0.14 0.29 0.47
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PHyLeaS next steps

Next steps
More experiments

Study the effect of the interior ordering on numerical performance (quality of Schur
approximation)

Study variants of ILU to approximate the Schur complement (ILU-pack)joint work with M.
Bollhoefer
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Black-box hybrid method based on algebraic approach
Partitioning general matrix into N blocks
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Preliminary results

# blocks
Matrix

name size nnz
Preconditioner 8 16 32 64 96

Block Jacobi 88 135 171 192 208bcsstk18 11,948 149,090
Additive Schwarz 26 42 60 83 86

Block Jacobi 72 189 649 885 -nasasrb 54,870 1,366,097
Additive Schwarz 42 97 148 165 251

Block Jacobi 266 656 931 - -ex11 16,614 1,096,948
Additive Schwarz 17 17 35 43 57
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Consumming energy during the thesis

CPU hours consuming and CO2 emission

During this thesis more than 11000 runs on HPC machine:

173068 h on Blue Gene @ CERFACS  1436 Kw

10034 h on IBM JS21   @ CERFACS 1034 Kw

3887 h on CRAY XD1 @ CERFACS 400 Kw

2870 Kw
100 Kg of CO2  using nuclear energy

1435 Kg of CO2 using fuel energy

3444 Kg of CO2 using carbon energy

Europe}
85032 h on SYSTEM X @ Virg Tech  8928 Kw } 8928 Kw

312 Kg of CO2  using nuclear energy

4464 Kg of CO2 using fuel energy

10713Kg of CO2 using carbon energy
USA

}Pollution}Consumption

{
{

}
}

Thank you for your attention
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