Publications

Export 374 results:
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Shaiek, H., S. Tomov, A. Ayala, A. Haidar, and J. Dongarra, GPUDirect MPI Communications and Optimizations to Accelerate FFTs on Exascale Systems,” EuroMPI'19 Posters, Zurich, Switzerland, no. icl-ut-19-06: ICL, September 2019.  (2.25 MB)
Haidar, A., A. Abdelfattah, M. Zounon, S. Tomov, and J. Dongarra, A Guide for Achieving High Performance with Very Small Matrices on GPUs: A Case Study of Batched LU and Cholesky Factorizations,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 5, pp. 973–984, May 2018.  (832.92 KB)
H
Agrawal, S., Hardware Software Server in NetSolve,” ICL Technical Report, no. ICL-UT-02-02, January 2002.  (221.4 KB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Ayala, A., S. Tomov, A. Haidar, and J. Dongarra, heFFTe: Highly Efficient FFT for Exascale,” International Conference on Computational Science (ICCS 2020), Amsterdam, Netherlands, June 2020.  (2.62 MB)
Ayala, A., S. Tomov, J. Dongarra, and A. Haidar, heFFTe: Highly Efficient FFT for Exascale (Poster) , Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.  (6.2 MB)
Ayala, A., S. Tomov, A. Haidar, and J. Dongarra, heFFTe: Highly Efficient FFT for Exascale (Poster) , Seattle, WA, SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP20), February 2020.  (1.54 MB)
Ayala, A., S. Tomov, A. Haidar, and J. Dongarra, heFFTe: Highly Efficient FFT for Exascale (Poster) : NVIDIA GPU Technology Conference (GTC2020), October 2020.  (866.88 KB)
Newburn, C. J., G. Bansal, M. Wood, L. Crivelli, J. Planas, A. Duran, P. Souza, L. Borges, P. Luszczek, S. Tomov, et al., Heterogeneous Streaming,” The Sixth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS 2016, Chicago, IL, IEEE, May 2016.  (2.73 MB)
Palma, J., J. Dongarra, and V. Hernández, High Performance Computing for Computational Science,” Lecture Notes in Computer Science, vol. 2565, VECPAR 2002, 5th International Conference June 26-28, 2002, Springer-Verlag, Berlin, January 2003.
Caniou, Y., E. Caron, F. Desprez, H. Nakada, Y. Tanaka, and K. Seymour, High Performance GridRPC Middleware,” Recent developments in Grid Technology and Applications: Nova Science Publishers, 00 2008.  (923.06 KB)
Beams, N., A. Abdelfattah, S. Tomov, J. Dongarra, T. Kolev, and Y. Dudouit, High-Order Finite Element Method using Standard and Device-Level Batch GEMM on GPUs,” 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA): IEEE, November 2020.  (1.3 MB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, High-performance Cholesky Factorization for GPU-only Execution,” Proceedings of the General Purpose GPUs (GPGPU-10), Austin, TX, ACM, February 2017.  (872.18 KB)
Anzt, H., T. Gruetzmacher, E. S. Quintana-Orti, and F. Scheidegger, High-Performance GPU Implementation of PageRank with Reduced Precision based on Mantissa Segmentation,” 8th Workshop on Irregular Applications: Architectures and Algorithms, 2018.
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, J. Falcou, and J. Dongarra, High-performance Matrix-matrix Multiplications of Very Small Matrices,” 22nd International European Conference on Parallel and Distributed Computing (Euro-Par'16), Grenoble, France, Springer International Publishing, August 2016.
Abdelfattah, A., M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, et al., High-Performance Tensor Contractions for GPUs,” University of Tennessee Computer Science Technical Report, no. UT-EECS-16-738: University of Tennessee, January 2016.  (2.36 MB)
Abdelfattah, A., M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, et al., High-Performance Tensor Contractions for GPUs,” International Conference on Computational Science (ICCS'16), San Diego, CA, June 2016.  (2.36 MB)
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, hipMAGMA v1.0 : Zenodo, March 2020.
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, hipMAGMA v2.0 : Zenodo, July 2020.
Jagode, H., J. Dongarra, S. Alam, J. Vetter, W.. Spear, and A. D. Malony, A Holistic Approach for Performance Measurement and Analysis for Petascale Applications,” ICCS 2009 Joint Workshop: Tools for Program Development and Analysis in Computational Science and Software Engineering for Large-Scale Computing, vol. 2009, Baton Rouge, Louisiana, Springer-Verlag Berlin Heidelberg 2009, pp. 686-695, May 2009.  (3.96 MB)
Jagode, H., J. Dongarra, S. Alam, J. Vetter, W.. Spear, and A. D. Malony, A Holistic Approach for Performance Measurement and Analysis for Petascale Applications,” ICCS 2009 Joint Workshop: Tools for Program Development and Analysis in Computational Science and Software Engineering for Large-Scale Computing, vol. 2009, Baton Rouge, Louisiana, Springer-Verlag Berlin Heidelberg 2009, pp. 686-695, May 2009.  (3.96 MB)
Lukarski, D., H. Anzt, S. Tomov, and J. Dongarra, Hybrid Multi-Elimination ILU Preconditioners on GPUs,” International Heterogeneity in Computing Workshop (HCW), IPDPS 2014, Phoenix, AZ, IEEE, May 2014.  (1.67 MB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, S. Thibault, and S. Tomov, A Hybridization Methodology for High-Performance Linear Algebra Software for GPUs,” in GPU Computing Gems, Jade Edition, vol. 2: Elsevier, pp. 473-484, 00 2011.
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, S. Thibault, and S. Tomov, A Hybridization Methodology for High-Performance Linear Algebra Software for GPUs,” in GPU Computing Gems, Jade Edition, vol. 2: Elsevier, pp. 473-484, 00 2011.
I
Alam, S., R. F. Barrett, H. Jagode, J. A.. Kuehn, S. W. Poole, and R.. Sankaran, Impact of Quad-core Cray XT4 System and Software Stack on Scientific Computation,” Euro-Par 2009, Lecture Notes in Computer Science, vol. 5704/2009, Delft, The Netherlands, Springer Berlin / Heidelberg, pp. 334-344, August 2009.  (312.74 KB)
Ayala, A., S. Tomov, X. Luo, H. Shaiek, A. Haidar, G. Bosilca, and J. Dongarra, Impacts of Multi-GPU MPI Collective Communications on Large FFT Computation,” Workshop on Exascale MPI (ExaMPI) at SC19, Denver, CO, November 2019.  (1.6 MB)
Kurzak, J., H. Anzt, M. Gates, and J. Dongarra, Implementation and Tuning of Batched Cholesky Factorization and Solve for NVIDIA GPUs,” IEEE Transactions on Parallel and Distributed Systems, no. 1045-9219, November 2015.
Abdelfattah, A., M. Gates, J. Kurzak, P. Luszczek, and J. Dongarra, Implementation of the C++ API for Batch BLAS,” SLATE Working Notes, no. 07, ICL-UT-18-04: Innovative Computing Laboratory, University of Tennessee, June 2018.  (1.07 MB)
Anzt, H., S. Tomov, and J. Dongarra, Implementing a Sparse Matrix Vector Product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs,” University of Tennessee Computer Science Technical Report, no. UT-EECS-14-727: University of Tennessee, April 2014.  (578.11 KB)
Aupy, G., M. Faverge, Y. Robert, J. Kurzak, P. Luszczek, and J. Dongarra, Implementing a systolic algorithm for QR factorization on multicore clusters with PaRSEC,” Lawn 277, no. UT-CS-13-709, May 2013.  (298.63 KB)
Anzt, H., and E. S. Quintana-Orti, Improving the Energy Efficiency of Sparse Linear System Solvers on Multicore and Manycore Systems,” Philosophical Transactions of the Royal Society A -- Mathematical, Physical and Engineering Sciences, vol. 372, issue 2018, July 2014.  (779.57 KB)
Yamazaki, I., H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra, Improving the performance of CA-GMRES on multicores with multiple GPUs,” IPDPS 2014, Phoenix, AZ, IEEE, May 2014.  (333.82 KB)
Anzt, H., T. Huckle, J. Bräckle, and J. Dongarra, Incomplete Sparse Approximate Inverses for Parallel Preconditioning,” Parallel Computing, vol. 71, pp. 1–22, January 2018.  (1.24 MB)
Arnold, D., H. Casanova, and J. Dongarra, Innovations of the NetSolve Grid Computing System,” Concurrency: Practice and Experience, vol. 14, no. 13-15, pp. 1457-1479, January 2002.  (311.31 KB)
Tomov, S., K. Wong, J. Dongarra, R. Archibald, E. Chow, E. D'Azevedo, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, et al., Integrating Deep Learning in Domain Science at Exascale (MagmaDNN) , virtual, DOD HPCMP seminar, December 2020.  (11.12 MB)
Archibald, R., E. Chow, E. D'Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, et al., Integrating Deep Learning in Domain Sciences at Exascale,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-10: University of Tennessee, August 2020.  (1.09 MB)
Archibald, R., E. Chow, E. D'Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, et al., Integrating Deep Learning in Domain Sciences at Exascale,” 2020 Smoky Mountains Computational Sciences and Engineering Conference (SMC 2020), August 2020.
Ayala, A., S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Dongarra, Interim Report on Benchmarking FFT Libraries on High Performance Systems,” Innovative Computing Laboratory Technical Report, no. ICL-UT-21-03: University of Tennessee, July 2021.  (2.68 MB)
Dongarra, J., P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina, T. Moore, R. Stevens, A. Trefethen, et al., The International Exascale Software Project: A Call to Cooperative Action by the Global High Performance Community,” International Journal of High Performance Computing Applications (to appear), July 2009.  (203.04 KB)
Dongarra, J., P. Beckman, T. Moore, P. Aerts, G. Aloisio, J-C. Andre, D. Barkai, J-Y. Berthou, T. Boku, B. Braunschweig, et al., The International Exascale Software Project Roadmap,” International Journal of High Performance Computing, vol. 25, no. 1, pp. 3-60, January 2011.  (719.74 KB)
Dongarra, J., P. Beckman, T. Moore, P. Aerts, G. Aloisio, J-C. Andre, D. Barkai, J-Y. Berthou, T. Boku, B. Braunschweig, et al., The International Exascale Software Project Roadmap,” International Journal of High Performance Computing, vol. 25, no. 1, pp. 3-60, January 2011.  (719.74 KB)
Dongarra, J., P. Beckman, T. Moore, P. Aerts, G. Aloisio, J-C. Andre, D. Barkai, J-Y. Berthou, T. Boku, B. Braunschweig, et al., The International Exascale Software Project Roadmap,” International Journal of High Performance Computing, vol. 25, no. 1, pp. 3-60, January 2011.  (719.74 KB)
Beck, M., T. Moore, P. Luszczek, and A. Danalis, Interoperable Convergence of Storage, Networking, and Computation,” Advances in Information and Communication: Proceedings of the 2019 Future of Information and Communication Conference (FICC), no. 2: Springer International Publishing, pp. 667-690, 2020.  (1.8 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Investigating the Benefit of FP16-Enabled Mixed-Precision Solvers for Symmetric Positive Definite Matrices using GPUs,” International Conference on Computational Science (ICCS 2020), Amsterdam, Netherlands, Springer, Cham, June 2020.  (702.38 KB)
Anzt, H., E. Chow, and J. Dongarra, Iterative Sparse Triangular Solves for Preconditioning,” EuroPar 2015, Vienna, Austria, Springer Berlin, August 2015.  (322.36 KB)
L
Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, et al., LAPACK Users' Guide, 3rd ed.,” Philadelphia: Society for Industrial and Applied Mathematics, January 1999.
Jagode, H., H. Anzt, H. Ltaief, and P. Luszczek, Lecture Notes in Computer Science: High Performance Computing , vol. 12761: Springer International Publishing, 2021.
Cao, Q., Y. Pei, K. Akbudak, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D Data-Sparse Matrix Problems,” 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2021), Portland, OR, IEEE, May 2021.  (1.08 MB)
Brown, J., A. Abdelfattah, V. Barra, N. Beams, J-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari, T. Kolev, D. Medina, et al., libCEED: Fast algebra for high-order element-based discretizations,” Journal of Open Source Software, vol. 6, no. 63, pp. 2945, 2021.

Pages