Publications

Export 1298 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Tomov, S., A. Haidar, D. Schultz, and J. Dongarra, Evaluation and Design of FFT for Distributed Accelerated Systems,” ECP WBS 2.3.3.09 Milestone Report, no. FFT-ECP ST-MS-10-1216: Innovative Computing Laboratory, University of Tennessee, October 2018.  (7.53 MB)
Tomov, S., K. Wong, J. Dongarra, R. Archibald, E. Chow, E. D'Azevedo, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, et al., Integrating Deep Learning in Domain Science at Exascale (MagmaDNN) , virtual, DOD HPCMP seminar, December 2020.  (11.12 MB)
Tomov, S., J. Dongarra, A. Haidar, I. Yamazaki, T. Dong, T. Schulthess, and R. Solcà, MAGMA: A Breakthrough in Solvers for Eigenvalue Problems , San Jose, CA, GPU Technology Conference (GTC12), Presentation, May 2012.  (9.23 MB)
Tomov, S., and J. Dongarra, Accelerating the Reduction to Upper Hessenberg Form through Hybrid GPU-Based Computing,” University of Tennessee Computer Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219), May 2009.  (2.37 MB)
Terpstra, D., H. Jagode, H. You, and J. Dongarra, Collecting Performance Data with PAPI-C,” Tools for High Performance Computing 2009, 3rd Parallel Tools Workshop, Dresden, Germany, Springer Berlin / Heidelberg, pp. 157-173, May 2010. DOI: 10.1007/978-3-642-11261-4_11  (4.45 MB)
Tang, C., A. Bouteiller, T. Herault, M G. Venkata, and G. Bosilca, From MPI to OpenSHMEM: Porting LAMMPS,” OpenSHMEM and Related Technologies. Experiences, Implementations, and Technologies, Annapolis, MD, USA, Springer International Publishing, pp. 121–137, 2015. DOI: 10.1007/978-3-319-26428-8_8
Tahmid, T., M. Gates, P. Luszczek, and C. D. Schuman, SpikeRL: A Scalable and Energy-efficient Framework for Deep Spiking Reinforcement Learning : arXiv, February 2025.
Tahmid, T., M. Gates, P. Luszczek, and C. Schuman, Towards Scalable and Efficient Spiking Reinforcement Learning for Continuous Control Tasks,” 2024 International Conference on Neuromorphic Systems (ICONS), Arlington, VA, USA, IEEE, 2024. DOI: 10.1109/ICONS62911.2024.00057
S
Sun, J., J. Fu, J. Drake, Q. Zhu, A. Haidar, M. Gates, S. Tomov, and J. Dongarra, Computational Benefit of GPU Optimization for Atmospheric Chemistry Modeling,” Journal of Advances in Modeling Earth Systems, vol. 10, issue 8, pp. 1952–1969, August 2018. DOI: 10.1029/2018MS001276  (3.4 MB)
Sukkari, D., M. Gates, M. Al Farhan, H. Anzt, and J. Dongarra, Task-Based Polar Decomposition Using SLATE on Massively Parallel Systems with Hardware Accelerators,” SC-W '23: Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, ACM, November 2023. DOI: 10.1145/3624062.3624248
Spannaus, A., K. J. H. Law, P. Luszczek, F. Nasrin, C. Putman Micucci, P. K. Liaw, L. J. Santodonato, D. J. Keffer, and V. Maroulas, Materials fingerprinting classification,” Computer Physics Communications, pp. 108019, May Jan. DOI: 10.1016/j.cpc.2021.108019  (3.8 MB)
Song, F., A. YarKhan, and J. Dongarra, Dynamic Task Scheduling for Linear Algebra Algorithms on Distributed-Memory Multicore Systems,” International Conference for High Performance Computing, Networking, Storage, and Analysis (SC '09), Portland, OR, November 2009.  (502.49 KB)
Song, F., and J. Dongarra, A Scalable Framework for Heterogeneous GPU-Based Clusters,” The 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2012), Pittsburgh, PA, USA, ACM, June 2012.  (3.39 MB)
Song, F., S. Tomov, and J. Dongarra, Enabling and Scaling Matrix Computations on Heterogeneous Multi-Core and Multi-GPU Systems,” 26th ACM International Conference on Supercomputing (ICS 2012), San Servolo Island, Venice, Italy, ACM, June 2012.  (5.88 MB)
Song, F., S. Moore, and J. Dongarra, A Scalable Non-blocking Multicast Scheme for Distributed DAG Scheduling,” The International Conference on Computational Science 2009 (ICCS 2009), vol. 5544, Baton Rouge, LA, pp. 195-204, May 2009.  (228.45 KB)
Song, F., H. Ltaeif, B. Hadri, and J. Dongarra, Scalable Tile Communication-Avoiding QR Factorization on Multicore Cluster Systems,” University of Tennessee Computer Science Technical Report, vol. –10-653, April 2010.  (3.42 MB)
Song, F., H. Ltaeif, B. Hadri, and J. Dongarra, Scalable Tile Communication-Avoiding QR Factorization on Multicore Cluster Systems,” SC'10, New Orleans, LA, ACM SIGARCH/ IEEE Computer Society, November 2010.  (3.42 MB)
Song, F., S. Tomov, and J. Dongarra, Efficient Support for Matrix Computations on Heterogeneous Multi-core and Multi-GPU Architectures,” University of Tennessee Computer Science Technical Report, UT-CS-11-668, (also Lawn 250), June 2011.  (5.93 MB)
Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI - The Complete Reference, Volume 1: The MPI Core , Second, Cambridge, MA, USA, MIT Press, pp. 426, August 1998.
Slaughter, E., W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz, E. Marx, K. S. Morris, Q. Cao, G. Bosilca, et al., Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance,” International Conference for High Performance Computing Networking, Storage, and Analysis (SC20): ACM, November 2020.  (644.92 KB)
Slattery, S. A., K. A. Surjuse, C. Peterson, D. A. Penchoff, and E. Valeev, Economical Quasi-Newton Unitary Optimization of Electronic Orbitals,” Physical Chemistry Chemical Physics, December 2023, 2024. DOI: 10.1039/D3CP05557D
Sid-Lakhdar, W., S. Cayrols, D. Bielich, A. Abdelfattah, P. Luszczek, M. Gates, S. Tomov, H. Johansen, D. Williams-Young, T. Davis, et al., PAQR: Pivoting Avoiding QR factorization,” 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, IEEE, 2023. DOI: 10.1109/IPDPS54959.2023.00040
Sid-Lakhdar, W. M., S. Cayrols, D. Bielich, A. Abdelfattah, P. Luszczek, M. Gates, S. Tomov, H. Johansen, D. Williams-Young, T. A. Davis, et al., PAQR: Pivoting Avoiding QR factorization,” ICL Technical Report, no. ICL-UT-22-06, June 2022.  (364.85 KB)
Sid-Lakhdar, W. M., M. Aznaveh, P. Luszczek, and J. Dongarra, Deep Gaussian process with multitask and transfer learning for performance optimization,” 2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-7, September 2022. DOI: 10.1109/HPEC55821.2022.9926396

Pages