Publications

Export 388 results:
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-12: University of Tennessee, August 2020.  (476.36 KB)
Brown, C., A. Abdelfattah, S. Tomov, and J. Dongarra, Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs,” 2020 IEEE High Performance Extreme Computing Virtual Conference: IEEE, September 2020.  (476.36 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, On the Development of Variable Size Batched Computation for Heterogeneous Parallel Architectures,” The 17th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2016), IPDPS 2016, Chicago, IL, IEEE, May 2016.  (708.62 KB)
E
Hoefler, T., B. Stevens, A. F. Prein, J. Baehr, T. Schulthess, T. F. Stocker, J. Taylor, D. Klocke, P. Manninen, P. M. Forster, et al., Earth Virtualization Engines - A Technical Perspective , September 2023.
Kolev, T., P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton, S. Tomov, M. S. Shephard, A. Abdelfattah, et al., Efficient exascale discretizations: High-order finite element methods,” The International Journal of High Performance Computing Applications, pp. 10943420211020803, 2021. DOI: 10.1177/10943420211020803
YarKhan, A., J. Kurzak, A. Abdelfattah, and J. Dongarra, An Empirical View of SLATE Algorithms on Scalable Hybrid System,” Innovative Computing Laboratory Technical Report, no. ICL-UT-19-08: University of Tennessee, Knoxville, September 2019.  (441.16 KB)
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Enhancing Parallelism of Tile QR Factorization for Multicore Architectures,” Submitted to Transaction on Parallel and Distributed Systems, December 2009.  (464.23 KB)
Nayak, P., T. Cojean, and H. Anzt, Evaluating Asynchronous Schwarz Solvers on GPUs,” International Journal of High Performance Computing Applications, August 2020. DOI: 10.1177/1094342020946814
Anzt, H., Y. M. Tsai, A. Abdelfattah, T. Cojean, and J. Dongarra, Evaluating the Performance of NVIDIA’s A100 Ampere GPU for Sparse and Batched Computations,” 2020 IEEE/ACM Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS): IEEE, November 2020.  (1.9 MB)
Anzt, H., Y. M. Tsai, A. Abdelfattah, T. Cojean, and J. Dongarra, Evaluating the Performance of NVIDIA’s A100 Ampere GPU for Sparse and Batched Computations,” 2020 IEEE/ACM Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS): IEEE, November 2020.  (1.9 MB)
Luo, L., K. Bochenina, T. M. Abuhay, N. Dorzhu, G. Kampis, S. Kovalchuk, V. Krzhizhanovskaya, M. Paszyński, C. de Mulatier, J. Dongarra, et al., Evolution of the computational science community: The dynamics of topics and collaborations in 24 years of ICCS and JoCS publications,” Journal of Computational Science, vol. 89, July 2025. DOI: 10.1016/j.jocs.2025.102609
Gates, M., A. Abdelfattah, K. Akbudak, M. Al Farhan, R. Alomairy, D. Bielich, T. Burgess, S. Cayrols, N. Lindquist, D. Sukkari, et al., Evolution of the SLATE linear algebra library,” The International Journal of High Performance Computing Applications, September 2024. DOI: 10.1177/10943420241286531
Gates, M., A. Abdelfattah, K. Akbudak, M. Al Farhan, R. Alomairy, D. Bielich, T. Burgess, S. Cayrols, N. Lindquist, D. Sukkari, et al., Evolution of the SLATE linear algebra library,” The International Journal of High Performance Computing Applications, September 2024. DOI: 10.1177/10943420241286531
Gates, M., A. Abdelfattah, K. Akbudak, M. Al Farhan, R. Alomairy, D. Bielich, T. Burgess, S. Cayrols, N. Lindquist, D. Sukkari, et al., Evolution of the SLATE linear algebra library,” The International Journal of High Performance Computing Applications, September 2024. DOI: 10.1177/10943420241286531
Dongarra, J., S. Moore, G. D. Peterson, S. Tomov, J. Allred, V. Natoli, and D. Richie, Exploring New Architectures in Accelerating CFD for Air Force Applications,” Proceedings of the DoD HPCMP User Group Conference, Seattle, Washington, January 2008.  (492.86 KB)
Cao, Q., Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Extreme-Scale Task-Based Cholesky Factorization Toward Climate and Weather Prediction Applications,” Platform for Advanced Scientific Computing Conference (PASC20), Geneva, Switzerland, ACM, June 2020. DOI: 10.1145/3394277.3401846  (2.71 MB)
F
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Factorization and Inversion of a Million Matrices using GPUs: Challenges and Countermeasures,” Procedia Computer Science, vol. 108, pp. 606–615, June 2017. DOI: 10.1016/j.procs.2017.05.250  (643.44 KB)
Alvaro, W., J. Kurzak, and J. Dongarra, Fast and Small Short Vector SIMD Matrix Multiplication Kernels for the CELL Processor,” University of Tennessee Computer Science Technical Report, no. UT-CS-08-609, (also LAPACK Working Note 189), January 2008.  (500.99 KB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Fast Batched Matrix Multiplication for Small Sizes using Half Precision Arithmetic on GPUs,” 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, IEEE, May 2019.  (675.5 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Fast Cholesky Factorization on GPUs for Batch and Native Modes in MAGMA,” Journal of Computational Science, vol. 20, pp. 85–93, May 2017. DOI: 10.1016/j.jocs.2016.12.009  (3.6 MB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, S. Thibault, and S. Tomov, Faster, Cheaper, Better - A Hybridization Methodology to Develop Linear Algebra Software for GPUs,” LAPACK Working Note, no. 230, 00 2010.  (334.48 KB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, S. Thibault, and S. Tomov, Faster, Cheaper, Better - A Hybridization Methodology to Develop Linear Algebra Software for GPUs,” LAPACK Working Note, no. 230, 00 2010.  (334.48 KB)
Ayala, A., S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Dongarra, FFT Benchmark Performance Experiments on Systems Targeting Exascale,” ICL Technical Report, no. ICL-UT-22-02, March 2022.  (5.87 MB)
Tomov, S., A. Ayala, A. Haidar, and J. Dongarra, FFT-ECP API and High-Performance Library Prototype for 2-D and 3-D FFTs on Large-Scale Heterogeneous Systems with GPUs,” ECP Milestone Report, no. FFT-ECP STML13-27: Innovative Computing Laboratory, University of Tennessee, January 2020.  (9.71 MB)
Tomov, S., A. Haidar, A. Ayala, D. Schultz, and J. Dongarra, FFT-ECP Fast Fourier Transform , Houston, TX, 2019 ECP Annual Meeting (Research Poster), January 2019.  (1.51 MB)
Tomov, S., A. Haidar, A. Ayala, H. Shaiek, and J. Dongarra, FFT-ECP Implementation Optimizations and Features Phase,” Innovative Computing Laboratory Technical Report, no. ICL-UT-19-12: University of Tennessee, October 2019.  (4.14 MB)
Anzt, H., J. Dongarra, and E. S. Quintana-Orti, Fine-grained Bit-Flip Protection for Relaxation Methods,” Journal of Computational Science, November 2016. DOI: 10.1016/j.jocs.2016.11.013  (1.47 MB)
Anzt, H., G. Collins, J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Flexible Batched Sparse Matrix Vector Product on GPUs , Denver, Colorado, ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, November 2017.  (16.8 MB)
Anzt, H., G. Collins, J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Flexible Batched Sparse Matrix-Vector Product on GPUs,” 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '17), Denver, CO, ACM Press, November 2017. DOI: http://dx.doi.org/10.1145/3148226.3148230  (583.4 KB)
Cao, Q., R. Alomairy, Y. Pei, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), July 2022. DOI: 10.1109/IPDPS53621.2022.00047  (1.03 MB)
G
Anzt, H., N. Beams, T. Cojean, F. Göbel, T. Grützmacher, A. Kashi, P. Nayak, T. Ribizel, and Y. M. Tsai, Gingko: A Sparse Linear Algebrea Library for HPC : 2021 ECP Annual Meeting, April 2021.  (893.04 KB)
Anzt, H., T. Cojean, Y-C. Chen, F. Goebel, T. Gruetzmacher, P. Nayak, T. Ribizel, and Y-H. Tsai, Ginkgo: A High Performance Numerical Linear Algebra Library,” Journal of Open Source Software, vol. 5, issue 52, August 2020. DOI: 10.21105/joss.02260  (721.84 KB)
Cojean, T., P. Nayak, T. Ribizel, N. Beams, Y-H. Mike Tsai, M. Koch, F. Göbel, T. Grützmacher, and H. Anzt, Ginkgo - A math library designed to accelerate Exascale Computing Project science applications,” The International Journal of High Performance Computing Applications, August 2024. DOI: 10.1177/10943420241268323
Anzt, H., T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, Y. Mike Tsai, and E. S. Quintana-Ortí, Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing,” ACM Transactions on Mathematical Software, vol. 48, issue 12, pp. 1 - 33, March 2022. DOI: 10.1145/3480935  (4.2 MB)
Anzt, H., T. Cojean, Y-C. Chen, F. Goebel, T. Gruetzmacher, P. Nayak, T. Ribizel, Y-H. Tsai, and J. Dongarra, Ginkgo: A Node-Level Sparse Linear Algebra Library for HPC (Poster) , Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.  (699 KB)

Pages