Publications

Export 291 results:
Filters: Author is Stanimire Tomov  [Clear All Filters]
Journal Article
Voemel, C., S. Tomov, L-W. Wang, O. Marques, and J. Dongarra, The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot,” Journal of Computational Physics (submitted), January 2006.  (337.08 KB)
Voemel, C., S. Tomov, L-W. Wang, O. Marques, and J. Dongarra, The Use of Bulk States to Accelerate the Band Edge State Calculation of a Semiconductor Quantum Dot,” Journal of Computational Physics, vol. 223, pp. 774-782, 00 2007.  (452.6 KB)
Yamazaki, I., T. Dong, R. Solcà, S. Tomov, J. Dongarra, and T. C. Schulthess, Tridiagonalization of a dense symmetric matrix on multiple GPUs and its application to symmetric eigenvalue problems,” Concurrency and Computation: Practice and Experience, October 2013.  (1.71 MB)
Dongarra, J., M. Gates, P. Luszczek, and S. Tomov, Translational Process: Mathematical Software Perspective,” Journal of Computational Science, September 2020. DOI: 10.1016/j.jocs.2020.101216  (752.59 KB)
Dongarra, J., M. Gates, P. Luszczek, and S. Tomov, Translational process: Mathematical software perspective,” Journal of Computational Science, vol. 52, pp. 101216, 2021. DOI: 10.1016/j.jocs.2020.101216
Tomov, S., J. Dongarra, and M. Baboulin, Towards Dense Linear Algebra for Hybrid GPU Accelerated Manycore Systems,” Parallel Computing, vol. 36, no. 5-6, pp. 232-240, 00 2010.  (606.41 KB)
Yamazaki, I., S. Nooshabadi, S. Tomov, and J. Dongarra, Structure-aware Linear Solver for Realtime Convex Optimization for Embedded Systems,” IEEE Embedded Systems Letters, vol. 9, issue 3, pp. 61–64, May 2017. DOI: 10.1109/LES.2017.2700401  (339.11 KB)
Voemel, C., S. Tomov, O. Marques, A. Canning, L-W. Wang, and J. Dongarra, State-of-the-Art Eigensolvers for Electronic Structure Calculations of Large Scale Nano-Systems,” Journal of Computational Physics, vol. 227, no. 15, pp. 7113-7124, January 2008.
Yamazaki, I., S. Tomov, and J. Dongarra, Stability and Performance of Various Singular Value QR Implementations on Multicore CPU with a GPU,” ACM Transactions on Mathematical Software (TOMS), vol. 43, issue 2, October 2016.
Zaitsev, D., S. Tomov, and J. Dongarra, Solving Linear Diophantine Systems on Parallel Architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, issue 5, pp. 1158-1169, May 2019. DOI: http://dx.doi.org/10.1109/TPDS.2018.2873354  (802.97 KB)
Baboulin, M., J. Dongarra, A. Remy, S. Tomov, and I. Yamazaki, Solving Dense Symmetric Indefinite Systems using GPUs,” Concurrency and Computation: Practice and Experience, vol. 29, issue 9, March 2017. DOI: 10.1002/cpe.4055  (1.94 MB)
Du, P., P. Luszczek, S. Tomov, and J. Dongarra, Soft Error Resilient QR Factorization for Hybrid System with GPGPU,” Journal of Computational Science, vol. 4, issue 6, pp. 457–464, November 2013. DOI: http://dx.doi.org/10.1016/j.jocs.2013.01.004  (995.45 KB)
Du, P., P. Luszczek, S. Tomov, and J. Dongarra, Soft Error Resilient QR Factorization for Hybrid System with GPGPU,” Journal of Computational Science, Seattle, WA, Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems at SC11, November 2011.  (965.88 KB)
Du, P., P. Luszczek, S. Tomov, and J. Dongarra, Soft Error Resilient QR Factorization for Hybrid System,” UT-CS-11-675 (also LAPACK Working Note #252), no. ICL-CS-11-675, July 2011.  (1.39 MB)
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, The Singular Value Decomposition: Anatomy of Optimizing an Algorithm for Extreme Scale,” SIAM Review, vol. 60, issue 4, pp. 808–865, November 2018. DOI: 10.1137/17M1117732  (2.5 MB)
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms and LAPACK Routines,” ACM Transactions on Mathematical Software (TOMS), vol. 47, no. 3, pp. 1–23, 2021. DOI: 10.1145/3431921
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms,” ACM Transactions on Mathematical Software, October 2020.
Ltaeif, H., S. Tomov, R. Nath, P. Du, and J. Dongarra, A Scalable High Performant Cholesky Factorization for Multicore with GPU Accelerators,” Proc. of VECPAR'10 (to appear), Berkeley, CA, June 2010.  (870.46 KB)
Bernholc, J., M. Hodak, W. Lu, S. Moore, and S. Tomov, Scalability Study of a Quantum Simulation Code,” PARA 2010, Reykjavik, Iceland, June 2010.
Lu, Y., I. Yamazaki, F. Ino, Y. Matsushita, S. Tomov, and J. Dongarra, Reducing the Amount of out-of-core Data Access for GPU-Accelerated Randomized SVD,” Concurrency and Computation: Practice and Experience, April 2020. DOI: 10.1002/cpe.5754  (1.43 MB)
Demmel, J., J. Dongarra, B. Parlett, W. Kahan, M. Gu, D. Bindel, Y. Hida, X. Li, O. Marques, J. E. Riedy, et al., Prospectus for the Next LAPACK and ScaLAPACK Libraries,” PARA 2006, Umea, Sweden, June 2006.  (460.11 KB)
Wong, K., S. Tomov, and J. Dongarra, Project-Based Research and Training in High Performance Data Sciences, Data Analytics, and Machine Learning,” The Journal of Computational Science Education, vol. 11, issue 1, pp. 36-44, January 2020. DOI: 10.22369/issn.2153-4136/11/1/7  (4.4 MB)
Kurzak, J., P. Luszczek, S. Tomov, and J. Dongarra, Preliminary Results of Autotuning GEMM Kernels for the NVIDIA Kepler Architecture,” LAWN 267, 00 2012.  (1.14 MB)
Zunger, A., A. Franceschetti, G. Bester, W. B. Jones, K. Kim, P. A. Graf, L-W. Wang, A. Canning, O. Marques, C. Voemel, et al., Predicting the electronic properties of 3D, million-atom semiconductor nanostructure architectures,” J. Phys.: Conf. Ser. 46, vol. :101088/1742-6596/46/1/040, pp. 292-298, January 2006.  (644.1 KB)
Kasichayanula, K., D. Terpstra, P. Luszczek, S. Tomov, S. Moore, and G. D. Peterson, Power Aware Computing on GPUs,” SAAHPC '12 (Best Paper Award), Argonne, IL, July 2012.  (658.06 KB)
Bosilca, G., A. Bouteiller, T. Herault, P. Lemariner, N. Ohm Saengpatsa, S. Tomov, and J. Dongarra, Performance Portability of a GPU Enabled Factorization with the DAGuE Framework,” IEEE Cluster: workshop on Parallel Programming on Accelerator Clusters (PPAC), June 2011.  (290.98 KB)
Anzt, H., S. Tomov, and J. Dongarra, On the performance and energy efficiency of sparse linear algebra on GPUs,” International Journal of High Performance Computing Applications, October 2016. DOI: 10.1177/1094342016672081  (1.19 MB)
Abalenkovs, M., A. Abdelfattah, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, and A. YarKhan, Parallel Programming Models for Dense Linear Algebra on Heterogeneous Systems,” Supercomputing Frontiers and Innovations, vol. 2, no. 4, October 2015. DOI: 10.14529/jsfi1504  (3.68 MB)
Haidar, A., R. Solcà, M. Gates, S. Tomov, T. C. Schulthess, and J. Dongarra, A Novel Hybrid CPU-GPU Generalized Eigensolver for Electronic Structure Calculations Based on Fine Grained Memory Aware Tasks,” International Journal of High Performance Computing Applications, vol. 28, issue 2, pp. 196-209, May 2014. DOI: 10.1177/1094342013502097  (1.74 MB)
Solcà, R., A. Haidar, S. Tomov, J. Dongarra, and T. C. Schulthess, A Novel Hybrid CPU-GPU Generalized Eigensolver for Electronic Structure Calculations Based on Fine Grained Memory Aware Tasks,” Supercomputing '12 (poster), Salt Lake City, Utah, November 2012.
Yamazaki, I., S. Tomov, and J. Dongarra, Non-GPU-resident Dense Symmetric Indefinite Factorization,” Concurrency and Computation: Practice and Experience, November 2016. DOI: 10.1002/cpe.4012
Dongarra, J., A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and A. YarKhan, Model-Driven One-Sided Factorizations on Multicore, Accelerated Systems,” Supercomputing Frontiers and Innovations, vol. 1, issue 1, 2014. DOI: http://dx.doi.org/10.14529/jsfi1401  (1.86 MB)
Haidar, A., H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems,” Proceedings of the Royal Society A, vol. 476, issue 2243, November 2020. DOI: 10.1098/rspa.2020.0110  (2.24 MB)
Yamazaki, I., S. Tomov, and J. Dongarra, Mixed-Precision Cholesky QR Factorization and its Case Studies on Multicore CPU with Multiple GPUs,” SIAM Journal on Scientific Computing, vol. 37, no. 3, pp. C203-C330, May 2015. DOI: DOI:10.1137/14M0973773  (374.8 KB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Matrix Multiplication on Batches of Small Matrices in Half and Half-Complex Precisions,” Journal of Parallel and Distributed Computing, vol. 145, pp. 188-201, November 2020. DOI: 10.1016/j.jpdc.2020.07.001  (1.3 MB)
Agullo, E., G. Bosilca, C. Castagnède, J. Dongarra, H. Ltaeif, and S. Tomov, Matrices Over Runtime Systems at Exascale,” Supercomputing '12 (poster), Salt Lake City, Utah, November 2012.
Farhan, M. Al, A. Abdelfattah, S. Tomov, M. Gates, D. Sukkari, A. Haidar, R. Rosenberg, and J. Dongarra, MAGMA Templates for Scalable Linear Algebra on Emerging Architectures,” The International Journal of High Performance Computing Applications, vol. 34, issue 6, pp. 645-658, November 2020. DOI: 10.1177/1094342020938421
Agullo, E., C. Augonnet, J. Dongarra, M. Faverge, J. Langou, H. Ltaeif, and S. Tomov, LU Factorization for Accelerator-Based Systems,” IEEE/ACS AICCSA 2011, Sharm-El-Sheikh, Egypt, December 2011.  (234.86 KB)
Anzt, H., T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak, S. Tomov, Y. M. Tsai, and W. Wang, Load-Balancing Sparse Matrix Vector Product Kernels on GPUs,” ACM Transactions on Parallel Computing, vol. 7, issue 1, March 2020. DOI: 10.1145/3380930  (5.67 MB)
Abdelfattah, A., H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, , and A. YarKhan, Linear Algebra Software for Large-Scale Accelerated Multicore Computing,” Acta Numerica, vol. 25, pp. 1-160, May 2016. DOI: 10.1017/S0962492916000015
Brown, J., A. Abdelfattah, V. Barra, N. Beams, J-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari, T. Kolev, D. Medina, et al., libCEED: Fast algebra for high-order element-based discretizations,” Journal of Open Source Software, vol. 6, no. 63, pp. 2945, 2021. DOI: 10.21105/joss.02945
Haidar, A., H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and J. Dongarra, Investigating Power Capping toward Energy-Efficient Scientific Applications,” Concurrency Computation: Practice and Experience, vol. 2018, issue e4485, pp. 1-14, April 2018. DOI: 10.1002/cpe.4485  (1.2 MB)
Nath, R., S. Tomov, and J. Dongarra, An Improved MAGMA GEMM for Fermi GPUs,” International Journal of High Performance Computing, vol. 24, no. 4, pp. 511-515, 00 2010.
Buttari, A., J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov, The Impact of Multicore on Math Software,” PARA 2006, Umea, Sweden, June 2006.  (223.53 KB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, S. Thibault, and S. Tomov, A Hybridization Methodology for High-Performance Linear Algebra Software for GPUs,” in GPU Computing Gems, Jade Edition, vol. 2: Elsevier, pp. 473-484, 00 2011.
Ltaeif, H., S. Tomov, R. Nath, and J. Dongarra, Hybrid Multicore Cholesky Factorization with Multiple GPU Accelerators,” IEEE Transaction on Parallel and Distributed Systems (submitted), March 2010.  (3.75 MB)
Haidar, A., J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov, and Y. Jia, HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi,” Scientific Programming, vol. 23, issue 1, January 2015. DOI: 10.3233/SPR-140404  (553.94 KB)
Haidar, A., A. Abdelfattah, M. Zounon, S. Tomov, and J. Dongarra, A Guide for Achieving High Performance with Very Small Matrices on GPUs: A Case Study of Batched LU and Cholesky Factorizations,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 5, pp. 973–984, May 2018. DOI: 10.1109/TPDS.2017.2783929  (832.92 KB)
Du, P., R. Weber, P. Luszczek, S. Tomov, G. D. Peterson, and J. Dongarra, From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-platform GPU Programming,” Parallel Computing, vol. 38, no. 8, pp. 391-407, August 2012.  (1.64 MB)
Kabir, K., A. Haidar, S. Tomov, A. Bouteiller, and J. Dongarra, A Framework for Out of Memory SVD Algorithms,” ISC High Performance 2017, pp. 158–178, June 2017. DOI: 10.1007/978-3-319-58667-0_9  (393.22 KB)

Pages