Publications

Export 971 results:
Filters: Author is Jack Dongarra  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Haidar, A., A. Abdelfattah, V. Dobrev, I. Karlin, T. Kolev, S. Tomov, and J. Dongarra, Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC16), Poster, September 2016.  (4.29 MB)
Baboulin, M., A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov, Accelerating Scientific Computations with Mixed Precision Algorithms,” Computer Physics Communications, vol. 180, issue 12, pp. 2526-2533, December 2009. DOI: 10.1016/j.cpc.2008.11.005  (402.69 KB)
Lindquist, N., P. Luszczek, and J. Dongarra, Accelerating Restarted GMRES with Mixed Precision Arithmetic,” IEEE Transactions on Parallel and Distributed Systems, June 2021. DOI: 10.1109/TPDS.2021.3090757  (572.4 KB)
Jagode, H., A. Danalis, G. Bosilca, and J. Dongarra, Accelerating NWChem Coupled Cluster through dataflow-based Execution,” 11th International Conference on Parallel Processing and Applied Mathematics (PPAM 2015), Krakow, Poland, Springer International Publishing, September 2015.  (452.82 KB)
Jagode, H., A. Danalis, and J. Dongarra, Accelerating NWChem Coupled Cluster through Dataflow-Based Execution,” The International Journal of High Performance Computing Applications, pp. 1–13, January 2017. DOI: 10.1177/1094342016672543  (4.07 MB)
Jagode, H., A. Danalis, and J. Dongarra, Accelerating NWChem Coupled Cluster through dataflow-based Execution,” The International Journal of High Performance Computing Applications, vol. 32, issue 4, pp. 540--551, July 2018. DOI: 10.1177/1094342016672543  (1.68 MB)
Baboulin, M., J. Dongarra, J. Herrmann, and S. Tomov, Accelerating Linear System Solutions Using Randomization Techniques,” ACM Transactions on Mathematical Software (also LAWN 246), vol. 39, issue 2, February 2013. DOI: 10.1145/2427023.2427025  (358.79 KB)
Nath, R., S. Tomov, and J. Dongarra, Accelerating GPU Kernels for Dense Linear Algebra,” Proc. of VECPAR'10, Berkeley, CA, June 2010.  (615.07 KB)
Abdulah, S., Q. Cao, Y. Pei, G. Bosilca, J. Dongarra, M. G. Genton, D. E. Keyes, H. Ltaief, and Y. Sun, Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach With PaRSEC,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, issue 4, pp. 964 - 976, April 2022. DOI: 10.1109/TPDS.2021.3084071
Ayala, A., S. Tomov, A. Haidar, M. Stoyanov, S. Cayrols, J. Li, G. Bosilca, and J. Dongarra, Accelerating FFT towards Exascale Computing : NVIDIA GPU Technology Conference (GTC2021), 2021.  (27.23 MB)
8
2
Dongarra, J., J. Demmel, J. Langou, and J. Langou, 2016 Dense Linear Algebra Software Packages Survey,” University of Tennessee Computer Science Technical Report, no. UT-EECS-16-744 / LAWN 290: University of Tennessee, September 2016.  (366.43 KB)
Kovalchuk, S. V., V. V. Krzhizhanovskaya, PMA. Sloot, G. Závodszky, M. H. Lees, M. Paszyński, and J. Dongarra, 20 years of computational science: Selected papers from 2020 International Conference on Computational Science,” Journal of Computational Science, vol. 53, pp. 101395–101395, 2021. DOI: 10.1016/j.jocs.2021.101395

Pages