Publications

Export 386 results:
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Akbudak, K., P. Bagwell, S. Cayrols, M. Gates, D. Sukkari, A. YarKhan, and J. Dongarra, SLATE Performance Improvements: QR and Eigenvalues,” SLATE Working Notes, no. 17, ICL-UT-21-02, April 2021.  (2 MB)
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms and LAPACK Routines,” ACM Transactions on Mathematical Software (TOMS), vol. 47, no. 3, pp. 1–23, 2021. DOI: 10.1145/3431921
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms,” ACM Transactions on Mathematical Software, October 2020.
Anzt, H., D. Lukarski, S. Tomov, and J. Dongarra, Self-Adaptive Multiprecision Preconditioners on Multicore and Manycore Architectures,” VECPAR 2014, Eugene, OR, June 2014.  (430.56 KB)
Aupy, G., and Y. Robert, Scheduling for Fault-Tolerance: An Introduction,” Topics in Parallel and Distributed Computing: Springer International Publishing, pp. 143–170, 2018. DOI: 10.1007/978-3-319-93109-8
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, R. Nath, J. Roman, S. Thibault, and S. Tomov, Scheduling Cholesky Factorization on Multicore Architectures with GPU Accelerators , Knoxville, TN, 2010 Symposium on Application Accelerators in High-Performance Computing (SAAHPC'10), Poster, July 2010.  (3.86 MB)
Agullo, E., C. Augonnet, J. Dongarra, H. Ltaeif, R. Namyst, R. Nath, J. Roman, S. Thibault, and S. Tomov, Scheduling Cholesky Factorization on Multicore Architectures with GPU Accelerators , Knoxville, TN, 2010 Symposium on Application Accelerators in High-Performance Computing (SAAHPC'10), Poster, July 2010.  (3.86 MB)
Luszczek, P., Y. Tsai, N. Lindquist, H. Anzt, and J. Dongarra, Scalable Data Generation for Evaluating Mixed-Precision Solvers,” 2020 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, IEEE, September 2020. DOI: 10.1109/HPEC43674.2020.9286145  (1.3 MB)
Ayala, A., S. Tomov, M. Stoyanov, and J. Dongarra, Scalability Issues in FFT Computation,” International Conference on Parallel Computing Technologies: Springer, pp. 279–287, 2021. DOI: 10.1007/978-3-030-86359-3_21
R
Abdelfattah, A., H. Anzt, A. Bouteiller, A. Danalis, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, et al., Roadmap for the Development of a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra Targeting Exascale,” SLATE Working Notes, no. 01, ICL-UT-17-02: Innovative Computing Laboratory, University of Tennessee, June 2017.  (2.8 MB)
Abdelfattah, A., H. Anzt, A. Bouteiller, A. Danalis, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, et al., Roadmap for the Development of a Linear Algebra Library for Exascale Computing: SLATE: Software for Linear Algebra Targeting Exascale,” SLATE Working Notes, no. 01, ICL-UT-17-02: Innovative Computing Laboratory, University of Tennessee, June 2017.  (2.8 MB)
Agullo, E., M. Altenbernd, H. Anzt, L. Bautista-Gomez, T. Benacchio, L. Bonaventura, H-J. Bungartz, S. Chatterjee, F. M. Ciorba, N. DeBardeleben, et al., Resiliency in numerical algorithm design for extreme scale simulations,” The International Journal of High Performance Computing Applications, vol. 36371337212766180823, issue 2, pp. 251 - 285, March 2022. DOI: 10.1177/10943420211055188
Agullo, E., M. Altenbernd, H. Anzt, L. Bautista-Gomez, T. Benacchio, L. Bonaventura, H-J. Bungartz, S. Chatterjee, F. M. Ciorba, N. DeBardeleben, et al., Resiliency in numerical algorithm design for extreme scale simulations,” The International Journal of High Performance Computing Applications, vol. 36371337212766180823, issue 2, pp. 251 - 285, March 2022. DOI: 10.1177/10943420211055188
Agullo, E., M. Altenbernd, H. Anzt, L. Bautista-Gomez, T. Benacchio, L. Bonaventura, H-J. Bungartz, S. Chatterjee, F. M. Ciorba, N. DeBardeleben, et al., Resiliency in numerical algorithm design for extreme scale simulations,” The International Journal of High Performance Computing Applications, vol. 36371337212766180823, issue 2, pp. 251 - 285, March 2022. DOI: 10.1177/10943420211055188
Cao, Q., S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra, M. G. Genton, D. Keyes, H. Ltaief, et al., Reshaping Geostatistical Modeling and Prediction for Extreme-Scale Environmental Applications,” 2022 International Conference for High Performance Computing, Networking, Storage and Analysis (SC22), Dallas, TX, IEEE Press, November 2022.
Cao, Q., S. Abdulah, R. Alomairy, Y. Pei, P. Nag, G. Bosilca, J. Dongarra, M. G. Genton, D. Keyes, H. Ltaief, et al., Reshaping Geostatistical Modeling and Prediction for Extreme-Scale Environmental Applications,” 2022 International Conference for High Performance Computing, Networking, Storage and Analysis (SC22), Dallas, TX, IEEE Press, November 2022.
Aupy, G., A. Gainaru, V. Honoré, P. Raghavan, Y. Robert, and H. Sun, Reservation Strategies for Stochastic Jobs,” 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2019), Rio de Janeiro, Brazil, IEEE Computer Society Press, May 2019.  (808.93 KB)
Cao, Q., S. Abdulah, H. Ltaief, M. G. Genton, D. Keyes, and G. Bosilca, Reducing Data Motion and Energy Consumption of Geospatial Modeling Applications Using Automated Precision Conversion,” 2023 IEEE International Conference on Cluster Computing (CLUSTER), Santa Fe, NM, USA, IEEE, November 2023. DOI: 10.1109/CLUSTER52292.2023.00035
P
Tsai, Y-H. M., T. Cojean, and H. Anzt, Providing performance portable numerics for Intel GPUs,” Concurrency and Computation: Practice and Experience, vol. 17, October 2022. DOI: 10.1002/cpe.7400  (3.16 MB)
Abdelfattah, A., S. Tomov, and J. Dongarra, Progressive Optimization of Batched LU Factorization on GPUs,” IEEE High Performance Extreme Computing Conference (HPEC’19), Waltham, MA, IEEE, September 2019.  (299.38 KB)
Funk, Y., M. Götz, and H. Anzt, Prediction of Optimal Solvers for Sparse Linear Systems Using Deep Learning,” 2022 SIAM Conference on Parallel Processing for Scientific Computing (PP), Philadelphia, PA, Society for Industrial and Applied Mathematics, pp. 14 - 24. DOI: 10.1137/1.978161197714110.1137/1.9781611977141.2
Aggarwal, I., P. Nayak, A. Kashi, and H. Anzt, Preconditioners for Batched Iterative Linear Solvers on GPUs,” Smoky Mountains Computational Sciences and Engineering Conference, vol. 169075: Springer Nature Switzerland, pp. 38 - 53, January 2023. DOI: 10.1007/978-3-031-23606-810.1007/978-3-031-23606-8_3
Aggarwal, I., P. Nayak, A. Kashi, and H. Anzt, Preconditioners for Batched Iterative Linear Solvers on GPUs,” Smoky Mountains Computational Sciences and Engineering Conference, vol. 169075: Springer Nature Switzerland, pp. 38 - 53, January 2023. DOI: 10.1007/978-3-031-23606-810.1007/978-3-031-23606-8_3
Aggarwal, I., P. Nayak, A. Kashi, and H. Anzt, Preconditioners for Batched Iterative Linear Solvers on GPUs,” Smoky Mountains Computational Sciences and Engineering Conference, vol. 169075: Springer Nature Switzerland, pp. 38 - 53, January 2023. DOI: 10.1007/978-3-031-23606-810.1007/978-3-031-23606-8_3
Anzt, H., M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Kohler, Preconditioned Krylov Solvers on GPUs,” Parallel Computing, June 2017. DOI: 10.1016/j.parco.2017.05.006  (1.19 MB)
Tsai, Y. M., T. Cojean, and H. Anzt, Porting Sparse Linear Algebra to Intel GPUs,” Euro-Par 2021: Parallel Processing Workshops, vol. 13098, Lisbon, Portugal, Springer International Publishing, pp. 57 - 68, June 2022. DOI: 10.1007/978-3-031-06156-1_5
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour, et al., PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP,” ACM Transactions on Mathematical Software, vol. 45, issue 2, June 2019. DOI: 10.1145/3264491  (7.5 MB)

Pages