Publications

Export 133 results:
Filters: Author is Azzam Haidar  [Clear All Filters]
Conference Proceedings
Bosilca, G., A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak, J. Langou, P. Lemariner, H. Ltaeif, et al., Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA,” Proceedings of the Workshops of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2011 Workshops), Anchorage, Alaska, USA, IEEE, pp. 1432-1441, May 2011.  (1.26 MB)
Haidar, A., S. Tomov, J. Dongarra, R. Solcà, and T. C. Schulthess, Leading Edge Hybrid Multi-GPU Algorithms for Generalized Eigenproblems in Electronic Structure Calculations,” International Supercomputing Conference (ISC), Lecture Notes in Computer Science, vol. 7905, Leipzig, Germany, Springer Berlin Heidelberg, pp. 67-80, June 2013. DOI: 10.1007/978-3-642-38750-0_6  (2.14 MB)
Haidar, A., H. Ltaeif, and J. Dongarra, Parallel Reduction to Condensed Forms for Symmetric Eigenvalue Problems using Aggregated Fine-Grained and Memory-Aware Kernels,” Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC11), Seattle, WA, November 2011.  (636.01 KB)
Haidar, A., Y. Jia, P. Luszczek, S. Tomov, A. YarKhan, and J. Dongarra, Weighted Dynamic Scheduling with Many Parallelism Grains for Offloading of Numerical Workloads to Multiple Varied Accelerators,” Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA'15), vol. No. 5, Austin, TX, ACM, November 2015.  (347.6 KB)
Journal Article
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018. DOI: 10.1016/j.jocs.2018.01.007  (2.18 MB)
Masliah, I., A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, Algorithms and Optimization Techniques for High-Performance Matrix-Matrix Multiplications of Very Small Matrices,” Parallel Computing, vol. 81, pp. 1–21, January 2019. DOI: 10.1016/j.parco.2018.10.003  (3.27 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Analysis and Design Techniques towards High-Performance and Energy-Efficient Dense Linear Solvers on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 12, pp. 2700–2712, December 2018. DOI: 10.1109/TPDS.2018.2842785  (2.53 MB)
Haidar, A., H. Ltaeif, A. YarKhan, and J. Dongarra, Analysis of Dynamically Scheduled Tile Algorithms for Dense Linear Algebra on Multicore Architectures,” Submitted to Concurrency and Computations: Practice and Experience, November 2010.  (1.65 MB)
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, Batched matrix computations on hardware accelerators based on GPUs,” International Journal of High Performance Computing Applications, February 2015. DOI: 10.1177/1094342014567546  (2.16 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Haidar, A., H. Ltaeif, P. Luszczek, and J. Dongarra, A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in a Two-Stage Bidiagonal Reduction,” IPDPS 2012, Shanghai, China, May 2012.  (480.43 KB)
Sun, J., J. Fu, J. Drake, Q. Zhu, A. Haidar, M. Gates, S. Tomov, and J. Dongarra, Computational Benefit of GPU Optimization for Atmospheric Chemistry Modeling,” Journal of Advances in Modeling Earth Systems, vol. 10, issue 8, pp. 1952–1969, August 2018. DOI: 10.1029/2018MS001276  (3.4 MB)
Lopez, M. G., W. Joubert, V. Larrea, O. Hernandez, A. Haidar, S. Tomov, and J. Dongarra, Evaluation of Directive-Based Performance Portable Programming Models,” International Journal of High Performance Computing and Networking, vol. 14, issue 2, pp. 165-182. DOI: http://dx.doi.org/10.1504/IJHPCN.2017.10009064  (1.12 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Factorization and Inversion of a Million Matrices using GPUs: Challenges and Countermeasures,” Procedia Computer Science, vol. 108, pp. 606–615, June 2017. DOI: 10.1016/j.procs.2017.05.250  (643.44 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Fast Cholesky Factorization on GPUs for Batch and Native Modes in MAGMA,” Journal of Computational Science, vol. 20, pp. 85–93, May 2017. DOI: 10.1016/j.jocs.2016.12.009  (3.6 MB)
Kabir, K., A. Haidar, S. Tomov, A. Bouteiller, and J. Dongarra, A Framework for Out of Memory SVD Algorithms,” ISC High Performance 2017, pp. 158–178, June 2017. DOI: 10.1007/978-3-319-58667-0_9  (393.22 KB)
Haidar, A., A. Abdelfattah, M. Zounon, S. Tomov, and J. Dongarra, A Guide for Achieving High Performance with Very Small Matrices on GPUs: A Case Study of Batched LU and Cholesky Factorizations,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, issue 5, pp. 973–984, May 2018. DOI: 10.1109/TPDS.2017.2783929  (832.92 KB)
Haidar, A., J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov, and Y. Jia, HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi,” Scientific Programming, vol. 23, issue 1, January 2015. DOI: 10.3233/SPR-140404  (553.94 KB)
Haidar, A., H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and J. Dongarra, Investigating Power Capping toward Energy-Efficient Scientific Applications,” Concurrency Computation: Practice and Experience, vol. 2018, issue e4485, pp. 1-14, April 2018. DOI: 10.1002/cpe.4485  (1.2 MB)
Abdelfattah, A., H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, , and A. YarKhan, Linear Algebra Software for Large-Scale Accelerated Multicore Computing,” Acta Numerica, vol. 25, pp. 1-160, May 2016. DOI: 10.1017/S0962492916000015
Farhan, M. Al, A. Abdelfattah, S. Tomov, M. Gates, D. Sukkari, A. Haidar, R. Rosenberg, and J. Dongarra, MAGMA Templates for Scalable Linear Algebra on Emerging Architectures,” The International Journal of High Performance Computing Applications, vol. 34, issue 6, pp. 645-658, November 2020. DOI: 10.1177/1094342020938421
Agullo, E., L. Giraud, A. Guermouche, A. Haidar, J. Roman, and Y. Lee-Tin-Yien, MaPHyS or the Development of a Parallel Algebraic Domain Decomposition Solver in the Course of the Solstice Project,” Sparse Days 2010 Meeting at CERFACS, Toulouse, France, June 2010.
Haidar, A., H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems,” Proceedings of the Royal Society A, vol. 476, issue 2243, November 2020. DOI: 10.1098/rspa.2020.0110  (2.24 MB)
Dongarra, J., A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and A. YarKhan, Model-Driven One-Sided Factorizations on Multicore, Accelerated Systems,” Supercomputing Frontiers and Innovations, vol. 1, issue 1, 2014. DOI: http://dx.doi.org/10.14529/jsfi1401  (1.86 MB)
Solcà, R., A. Haidar, S. Tomov, J. Dongarra, and T. C. Schulthess, A Novel Hybrid CPU-GPU Generalized Eigensolver for Electronic Structure Calculations Based on Fine Grained Memory Aware Tasks,” Supercomputing '12 (poster), Salt Lake City, Utah, November 2012.
Haidar, A., R. Solcà, M. Gates, S. Tomov, T. C. Schulthess, and J. Dongarra, A Novel Hybrid CPU-GPU Generalized Eigensolver for Electronic Structure Calculations Based on Fine Grained Memory Aware Tasks,” International Journal of High Performance Computing Applications, vol. 28, issue 2, pp. 196-209, May 2014. DOI: 10.1177/1094342013502097  (1.74 MB)
Agullo, E., L. Giraud, A. Guermouche, A. Haidar, and J. Roman, Parallel algebraic domain decomposition solver for the solution of augmented systems.,” Parallel, Distributed, Grid and Cloud Computing for Engineering, Ajaccio, Corsica, France, 12-15 April, 00 2011.
Abalenkovs, M., A. Abdelfattah, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, and A. YarKhan, Parallel Programming Models for Dense Linear Algebra on Heterogeneous Systems,” Supercomputing Frontiers and Innovations, vol. 2, no. 4, October 2015. DOI: 10.14529/jsfi1504  (3.68 MB)
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour, et al., PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP,” ACM Transactions on Mathematical Software, vol. 45, issue 2, June 2019. DOI: 10.1145/3264491  (7.5 MB)
Abdelfattah, A., T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kurzak, P. Luszczek, S. Tomov, et al., A Set of Batched Basic Linear Algebra Subprograms,” ACM Transactions on Mathematical Software, October 2020.
Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, The Singular Value Decomposition: Anatomy of Optimizing an Algorithm for Extreme Scale,” SIAM Review, vol. 60, issue 4, pp. 808–865, November 2018. DOI: 10.1137/17M1117732  (2.5 MB)
Giraud, L., A. Haidar, and Y. Saad, Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D,” Numerical Mathematics: Theory, Methods and Applications, vol. 3, no. 3, Beijing, Golbal Science Press, pp. 64-82, 00 2010.
Sourbier, F., A. Haidar, L. Giraud, H. Ben-Hadj-Ali, S. Operto, and J. Virieux, Three-dimensional parallel frequency-domain visco-acoustic wave modelling based on a hybrid direct/iterative solver.,” To appear in Geophysical Prospecting journal., 00 2011.  (1.04 MB)
Haidar, A., H. Ltaeif, and J. Dongarra, Toward High Performance Divide and Conquer Eigensolver for Dense Symmetric Matrices,” SIAM Journal on Scientific Computing (Accepted), July 2012.
Haidar, A., H. Ltaeif, and J. Dongarra, Toward High Performance Divide and Conquer Eigensolver for Dense Symmetric Matrices.,” Submitted to SIAM Journal on Scientific Computing (SISC), 00 2011.
Agullo, E., L. Giraud, A. Guermouche, A. Haidar, and J. Roman, Towards a Complexity Analysis of Sparse Hybrid Linear Solvers,” PARA 2010, Reykjavik, Iceland, June 2010.
Giraud, L., A. Haidar, and S. Pralet, Using multiple levels of parallelism to enhance the performance of domain decomposition solvers,” Parallel Computing, vol. 36, no. 5-6: Elsevier journals, pp. 285-296, 00 2010.  (418.57 KB)
Dongarra, J., S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki, H. Anzt, A. Haidar, and A. Abdelfattah, With Extreme Computing, the Rules Have Changed,” Computing in Science & Engineering, vol. 19, issue 3, pp. 52-62, May 2017. DOI: 10.1109/MCSE.2017.48  (485.34 KB)
Poster
Haidar, A., A. Abdelfattah, V. Dobrev, I. Karlin, T. Kolev, S. Tomov, and J. Dongarra, Accelerating Tensor Contractions for High-Order FEM on CPUs, GPUs, and KNLs , Gatlinburg, TN, moky Mountains Computational Sciences and Engineering Conference (SMC16), Poster, September 2016.  (4.29 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Cholesky Factorization on Batches of Matrices with Fixed and Variable Sizes , San Jose, CA, GPU Technology Conference (GTC16), Poster, April 2016.  (480.51 KB)
Tomov, S., A. Haidar, A. Ayala, D. Schultz, and J. Dongarra, FFT-ECP Fast Fourier Transform , Houston, TX, 2019 ECP Annual Meeting (Research Poster), January 2019.  (1.51 MB)
Shaiek, H., S. Tomov, A. Ayala, A. Haidar, and J. Dongarra, GPUDirect MPI Communications and Optimizations to Accelerate FFTs on Exascale Systems,” EuroMPI'19 Posters, Zurich, Switzerland, no. icl-ut-19-06: ICL, September 2019.  (2.25 MB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Ayala, A., S. Tomov, A. Haidar, and J. Dongarra, heFFTe: Highly Efficient FFT for Exascale (Poster) , Seattle, WA, SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP20), February 2020.  (1.54 MB)
Ayala, A., S. Tomov, J. Dongarra, and A. Haidar, heFFTe: Highly Efficient FFT for Exascale (Poster) , Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.  (6.2 MB)
Ayala, A., S. Tomov, A. Haidar, and J. Dongarra, heFFTe: Highly Efficient FFT for Exascale (Poster) : NVIDIA GPU Technology Conference (GTC2020), October 2020.  (866.88 KB)
Abdelfattah, A., J. Dongarra, A. Haidar, S. Tomov, and I. Yamazaki, MATEDOR: MAtrix, TEnsor, and Deep-learning Optimized Routines , Dallas, TX, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Research Poster, November 2018.  (2.55 MB)
Haidar, A., S. Tomov, A. Abdelfattah, I. Yamazaki, and J. Dongarra, MAtrix, TEnsor, and Deep-learning Optimized Routines (MATEDOR) , Washington, DC, NSF PI Meeting, Poster, April 2018. DOI: 10.6084/m9.figshare.6174143.v3  (2.4 MB)
Valero-Lara, P., J. Dongarra, A. Haidar, S. D. Relton, S. Tomov, and M. Zounon, A Standard for Batched BLAS Routines , Paris, France, 17th SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP16), April 2016.  (1.93 MB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Tensor Contractions using Optimized Batch GEMM Routines , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (1.64 MB)

Pages