Publications

Export 108 results:
Filters: Author is Anzt, Hartwig  [Clear All Filters]
Conference Paper
Thiyagalingam, J., G. von Laszewski, J. Yin, M. Emani, J. Papay, G. Barrett, P. Luszczek, A. Tsaris, C. Kirkpatrick, F. Wang, et al., AI Benchmarking for Science: Efforts from the MLCommons Science Working Group,” Lecture Notes in Computer Science, vol. 13387: Springer International Publishing, pp. 47 - 64, January 2023. DOI: 10.1007/978-3-031-23220-610.1007/978-3-031-23220-6_4
Ribizel, T., and H. Anzt, Approximate and Exact Selection on GPUs,” 2019 IEEE International Parallel and Distributed Processing Symposium Workshops, Rio de Janeiro, Brazil, IEEE, May 2019. DOI: 10.1109/IPDPSW.2019.00088  (440.71 KB)
Anzt, H., and G. Flegar, Are we Doing the Right Thing? – A Critical Analysis of the Academic HPC Community,” 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, IEEE, May 2019. DOI: 10.1109/IPDPSW.2019.00122  (622.32 KB)
Kashi, A., P. Nayak, D. Kulkarni, A. Scheinberg, P. Lin, and H. Anzt, Batched sparse iterative solvers on GPU for the collision operator for fusion plasma simulations,” 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, IEEE, July 2022. DOI: 10.1109/IPDPS53621.2022.00024  (1.26 MB)
Anzt, H., Y. M. Tsai, A. Abdelfattah, T. Cojean, and J. Dongarra, Evaluating the Performance of NVIDIA’s A100 Ampere GPU for Sparse and Batched Computations,” 2020 IEEE/ACM Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS): IEEE, November 2020.  (1.9 MB)
Anzt, H., G. Collins, J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Flexible Batched Sparse Matrix-Vector Product on GPUs,” 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '17), Denver, CO, ACM Press, November 2017. DOI: http://dx.doi.org/10.1145/3148226.3148230  (583.4 KB)
Abdelfattah, A., S. Tomov, P. Luszczek, H. Anzt, and J. Dongarra, GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure,” SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, ACM, November 2023. DOI: 10.1145/3624062.3624247
Newburn, C. J., G. Bansal, M. Wood, L. Crivelli, J. Planas, A. Duran, P. Souza, L. Borges, P. Luszczek, S. Tomov, et al., Heterogeneous Streaming,” The Sixth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS 2016, Chicago, IL, IEEE, May 2016.  (2.73 MB)
Anzt, H., T. Gruetzmacher, E. S. Quintana-Orti, and F. Scheidegger, High-Performance GPU Implementation of PageRank with Reduced Precision based on Mantissa Segmentation,” 8th Workshop on Irregular Applications: Architectures and Algorithms, 2018.
Anzt, H., and J. Dongarra, A Jaccard Weights Kernel Leveraging Independent Thread Scheduling on GPUs,” SBAC-PAD, Lyon, France, IEEE, 2018.  (237.68 KB)
Tsai, Y-H. Mike, N. Beams, and H. Anzt, Mixed Precision Algebraic Multigrid on GPUs,” Parallel Processing and Applied Mathematics (PPAM 2022), vol. 13826, Cham, Springer International Publishing, April 2023. DOI: 10.1007/978-3-031-30442-2_9
Goebel, F., H. Anzt, T. Cojean, G. Flegar, and E. S. Quintana-Orti, Multiprecision Block-Jacobi for Iterative Triangular Solves,” European Conference on Parallel Processing (Euro-Par 2020): Springer, August 2020. DOI: 10.1007/978-3-030-57675-2_34
Sid-Lakhdar, W., S. Cayrols, D. Bielich, A. Abdelfattah, P. Luszczek, M. Gates, S. Tomov, H. Johansen, D. Williams-Young, T. Davis, et al., PAQR: Pivoting Avoiding QR factorization,” 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, IEEE, 2023. DOI: 10.1109/IPDPS54959.2023.00040
Ribizel, T., and H. Anzt, Parallel Symbolic Cholesky Factorization,” SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, ACM, November 2023. DOI: 10.1145/3624062.3624253
Anzt, H., T. Ribizel, G. Flegar, E. Chow, and J. Dongarra, ParILUT – A Parallel Threshold ILU for GPUs,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, IEEE, May 2019. DOI: 10.1109/IPDPS.2019.00033  (505.95 KB)
Aggarwal, I., P. Nayak, A. Kashi, and H. Anzt, Preconditioners for Batched Iterative Linear Solvers on GPUs,” Smoky Mountains Computational Sciences and Engineering Conference, vol. 169075: Springer Nature Switzerland, pp. 38 - 53, January 2023. DOI: 10.1007/978-3-031-23606-810.1007/978-3-031-23606-8_3
Luszczek, P., Y. Tsai, N. Lindquist, H. Anzt, and J. Dongarra, Scalable Data Generation for Evaluating Mixed-Precision Solvers,” 2020 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, IEEE, September 2020. DOI: 10.1109/HPEC43674.2020.9286145  (1.3 MB)
Anzt, H., D. Lukarski, S. Tomov, and J. Dongarra, Self-Adaptive Multiprecision Preconditioners on Multicore and Manycore Architectures,” VECPAR 2014, Eugene, OR, June 2014.  (430.56 KB)
Tsai, Y. M., T. Cojean, and H. Anzt, Sparse Linear Algebra on AMD and NVIDIA GPUs—The Race is On,” ISC High Performance: Springer, June 2020. DOI: 10.1007/978-3-030-50743-5_16  (5.63 MB)
Sukkari, D., M. Gates, M. Al Farhan, H. Anzt, and J. Dongarra, Task-Based Polar Decomposition Using SLATE on Massively Parallel Systems with Hardware Accelerators,” SC-W '23: Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, ACM, November 2023. DOI: 10.1145/3624062.3624248
Anzt, H., Y. Chen Chen, T. Cojean, J. Dongarra, G. Flegar, P. Nayak, E. S. Quintana-Orti, Y. M. Tsai, and W. Wang, Towards Continuous Benchmarking,” Platform for Advanced Scientific Computing Conference (PASC 2019), Zurich, Switzerland, ACM Press, June 2019. DOI: 10.1145/3324989.3325719  (1.51 MB)
Anzt, H., J. Dongarra, G. Flegar, and T. Gruetzmacher, Variable-Size Batched Condition Number Calculation on GPUs,” SBAC-PAD, Lyon, France, September 2018.  (509.3 KB)
Anzt, H., J. Dongarra, G. Flegar, and E. S. Quintana-Orti, Variable-Size Batched LU for Small Matrices and Its Integration into Block-Jacobi Preconditioning,” 46th International Conference on Parallel Processing (ICPP), Bristol, United Kingdom, IEEE, August 2017. DOI: 10.1109/ICPP.2017.18
Conference Proceedings
Tsai, Y. M., T. Cojean, and H. Anzt, Porting Sparse Linear Algebra to Intel GPUs,” Euro-Par 2021: Parallel Processing Workshops, vol. 13098, Lisbon, Portugal, Springer International Publishing, pp. 57 - 68, June 2022. DOI: 10.1007/978-3-031-06156-1_5
Funk, Y., M. Götz, and H. Anzt, Prediction of Optimal Solvers for Sparse Linear Systems Using Deep Learning,” 2022 SIAM Conference on Parallel Processing for Scientific Computing (PP), Philadelphia, PA, Society for Industrial and Applied Mathematics, pp. 14 - 24. DOI: 10.1137/1.978161197714110.1137/1.9781611977141.2
Anzt, H., J. Dongarra, G. Flegar, E. S. Quintana-Orti, and A. E. Thomas, Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning,” International Conference on Computational Science (ICCS 2017), vol. 108, Zurich, Switzerland, Procedia Computer Science, pp. 1783-1792, June 2017. DOI: 10.1016/j.procs.2017.05.186  (512.57 KB)
Journal Article
Anzt, H., J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti, Adaptive Precision in Block-Jacobi Preconditioning for Iterative Sparse Linear System Solvers,” Concurrency and Computation: Practice and Experience, vol. 31, no. 6, pp. e4460, March 2019. DOI: 10.1002/cpe.4460  (341.54 KB)

Pages