Publications

Export 9 results:
Filters: Author is David Keyes  [Clear All Filters]
2006
Bhowmick, S., V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes, Application of Machine Learning to the Selection of Sparse Linear Solvers,” International Journal of High Performance Computing Applications (submitted), 00 2006.  (392.96 KB)
2011
Dongarra, J., P. Beckman, T. Moore, P. Aerts, G. Aloisio, J-C. Andre, D. Barkai, J-Y. Berthou, T. Boku, B. Braunschweig, et al., The International Exascale Software Project Roadmap,” International Journal of High Performance Computing, vol. 25, no. 1, pp. 3-60, January 2011.  (719.74 KB)
2016
Abdelfattah, A., H. Ltaeif, D. Keyes, and J. Dongarra, Performance optimization of Sparse Matrix-Vector Multiplication for multi-component PDE-based applications using GPUs,” Concurrency and Computation: Practice and Experience, vol. 28, issue 12, pp. 3447 - 3465, May 2016.  (3.21 MB)
2019
Cao, Q., Y. Pei, T. Herault, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools,” Workshop on Programming and Performance Visualization Tools (ProTools 19) at SC19, Denver, CO, ACM, November 2019.  (429.55 KB)
2020
Cao, Q., Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Extreme-Scale Task-Based Cholesky Factorization Toward Climate and Weather Prediction Applications,” Platform for Advanced Scientific Computing Conference (PASC20), Geneva, Switzerland, ACM, June 2020.  (2.71 MB)
2021
Cao, Q., Y. Pei, K. Akbudak, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D Data-Sparse Matrix Problems,” 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2021), Portland, OR, IEEE, May 2021.  (1.08 MB)
2022
Cao, Q., R. Alomairy, Y. Pei, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization,” IEEE International Parallel and Distributed Processing Symposium (IPDPS), July 2022.  (1.03 MB)