%0 Generic %D 2020 %T ASCR@40: Four Decades of Department of Energy Leadership in Advanced Scientific Computing Research %A Bruce Hendrickson %A Paul Messina %A Buddy Bland %A Jackie Chen %A Phil Colella %A Eli Dart %A Jack Dongarra %A Thom Dunning %A Ian Foster %A Richard Gerber %A Rachel Harken %A Wendy Huntoon %A Bill Johnston %A John Sarrao %A Jeff Vetter %I Advanced Scientific Computing Advisory Committee (ASCAC), US Department of Energy %8 2020-08 %G eng %U https://computing.llnl.gov/misc/ASCR@40-Highlights.pdf %0 Generic %D 2020 %T ASCR@40: Highlights and Impacts of ASCR’s Programs %A Bruce Hendrickson %A Paul Messina %A Buddy Bland %A Jackie Chen %A Phil Colella %A Eli Dart %A Jack Dongarra %A Thom Dunning %A Ian Foster %A Richard Gerber %A Rachel Harken %A Wendy Huntoon %A Bill Johnston %A John Sarrao %A Jeff Vetter %X The Office of Advanced Scientific Computing Research (ASCR) sits within the Office of Science in the Department of Energy (DOE). Per their web pages, “the mission of the ASCR program is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the DOE.” This succinct statement encompasses a wide range of responsibilities for computing and networking facilities; for procuring, deploying, and operating high performance computing, networking, and storage resources; for basic research in mathematics and computer science; for developing and sustaining a large body of software; and for partnering with organizations across the Office of Science and beyond. While its mission statement may seem very contemporary, the roots of ASCR are quite deep—long predating the creation of DOE. Applied mathematics and advanced computing were both elements of the Theoretical Division of the Manhattan Project. In the early 1950s, the Manhattan Project scientist and mathematician John von Neumann, then a commissioner for the AEC (Atomic Energy Commission), advocated for the creation of a Mathematics program to support the continued development and applications of digital computing. Los Alamos National Laboratory (LANL) scientist John Pasta created such a program to fund researchers at universities and AEC laboratories. Under several organizational name changes, this program has persisted ever since, and would eventually grow to become ASCR. %I US Department of Energy’s Office of Advanced Scientific Computing Research %8 2020-06 %G eng %U https://www.osti.gov/servlets/purl/1631812 %R https://doi.org/10.2172/1631812 %0 Journal Article %J International Journal of High Performance Computing %D 2011 %T The International Exascale Software Project Roadmap %A Jack Dongarra %A Pete Beckman %A Terry Moore %A Patrick Aerts %A Giovanni Aloisio %A Jean-Claude Andre %A David Barkai %A Jean-Yves Berthou %A Taisuke Boku %A Bertrand Braunschweig %A Franck Cappello %A Barbara Chapman %A Xuebin Chi %A Alok Choudhary %A Sudip Dosanjh %A Thom Dunning %A Sandro Fiore %A Al Geist %A Bill Gropp %A Robert Harrison %A Mark Hereld %A Michael Heroux %A Adolfy Hoisie %A Koh Hotta %A Zhong Jin %A Yutaka Ishikawa %A Fred Johnson %A Sanjay Kale %A Richard Kenway %A David Keyes %A Bill Kramer %A Jesus Labarta %A Alain Lichnewsky %A Thomas Lippert %A Bob Lucas %A Barney MacCabe %A Satoshi Matsuoka %A Paul Messina %A Peter Michielse %A Bernd Mohr %A Matthias S. Mueller %A Wolfgang E. Nagel %A Hiroshi Nakashima %A Michael E. Papka %A Dan Reed %A Mitsuhisa Sato %A Ed Seidel %A John Shalf %A David Skinner %A Marc Snir %A Thomas Sterling %A Rick Stevens %A Fred Streitz %A Bob Sugar %A Shinji Sumimoto %A William Tang %A John Taylor %A Rajeev Thakur %A Anne Trefethen %A Mateo Valero %A Aad van der Steen %A Jeffrey Vetter %A Peg Williams %A Robert Wisniewski %A Kathy Yelick %X Over the last 20 years, the open-source community has provided more and more software on which the world’s high-performance computing systems depend for performance and productivity. The community has invested millions of dollars and years of effort to build key components. However, although the investments in these separate software elements have been tremendously valuable, a great deal of productivity has also been lost because of the lack of planning, coordination, and key integration of technologies necessary to make them work together smoothly and efficiently, both within individual petascale systems and between different systems. It seems clear that this completely uncoordinated development model will not provide the software needed to support the unprecedented parallelism required for peta/ exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such as transactional memory, speculative execution, and graphics processing units. This report describes the work of the community to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated International Exascale Software Project. %B International Journal of High Performance Computing %V 25 %P 3-60 %8 2011-01 %G eng %R https://doi.org/10.1177/1094342010391989 %0 Journal Article %J International Journal of High Performance Computing Applications (to appear) %D 2009 %T The International Exascale Software Project: A Call to Cooperative Action by the Global High Performance Community %A Jack Dongarra %A Pete Beckman %A Patrick Aerts %A Franck Cappello %A Thomas Lippert %A Satoshi Matsuoka %A Paul Messina %A Terry Moore %A Rick Stevens %A Anne Trefethen %A Mateo Valero %B International Journal of High Performance Computing Applications (to appear) %8 2009-07 %G eng