Publications

Export 1279 results:
Filters: 10.1016 is j.parco.2021.102856  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Danalis, A., H. Jagode, and J. Dongarra, PAPI's new Software-Defined Events for in-depth Performance Analysis , Dresden, Germany, 13th Parallel Tools Workshop, September 2019.  (3.14 MB)
Danalis, A., P. Luszczek, G. Marin, J. Vetter, and J. Dongarra, BlackjackBench: Hardware Characterization with Portable Micro-Benchmarks and Automatic Statistical Analysis of Results,” IEEE International Parallel and Distributed Processing Symposium (submitted), Anchorage, AK, May 2011.
Danalis, A., and H. Jagode, Performance Application Programming Interface,” Accelerated Computing with HIP: Sun, Baruah and Kaeli, December 2022.
Danalis, A., H. Jagode, D. Barry, and J. Dongarra, Understanding Native Event Semantics , Knoxville, TN, 9th JLESC Workshop, April 2019.  (2.33 MB)
Davis, J., T. Gao, S. Chandrasekaran, H. Jagode, A. Danalis, P. Balaji, J. Dongarra, and M. Taufer, Characterization of Power Usage and Performance in Data-Intensive Applications using MapReduce over MPI,” 2019 International Conference on Parallel Computing (ParCo2019), Prague, Czech Republic, September 2019.
Demmel, J., J. Dongarra, J. Langou, J. Langou, P. Luszczek, and M. Mahoney, Prospectus for the Next LAPACK and ScaLAPACK Libraries: Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collaboration (BALLISTIC),” LAPACK Working Notes, no. 297, ICL-UT-20-07: University of Tennessee.  (1.41 MB)
Demmel, J., J. Dongarra, A. Fox, S. Williams, V. Volkov, and K. Yelick, Accelerating Time-To-Solution for Computational Science and Engineering,” SciDAC Review, 00 2009.  (739.11 KB)
Demmel, J., and J. Dongarra, LAPACK 2005 Prospectus: Reliable and Scalable Software for Linear Algebra Computations on High End Computers : LAPACK Working Note 164, January 2005.  (172.59 KB)
Demmel, J., J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley, and K. Yelick, Self Adapting Linear Algebra Algorithms and Software,” IEEE Proceedings (to appear), 00 2004.  (587.67 KB)
Demmel, J., J. Dongarra, B.. Parlett, W. Kahan, M. Gu, D. Bindel, Y. Hida, X. Li, O. Marques, J. E. Riedy, et al., Prospectus for the Next LAPACK and ScaLAPACK Libraries,” PARA 2006, Umea, Sweden, June 2006.  (460.11 KB)
Dempsey, B., and D. Weiss, Towards An Efficient, Scalable Replication Mechanism for the I2-DSI Project,” University of North Carolina School of Library and Information Science Technical Report, no. TR-1999-01, January 1999.
Deshmukh, S., R. Yokota, and G. Bosilca, Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD, and Fujitsu Processors,” ACM Transactions on Mathematical Software, vol. 49, issue 3, pp. 1 - 29, September 2023.
Deshmukh, S., R. Yokota, G. Bosilca, and Q. Ma, O(N) distributed direct factorization of structured dense matrices using runtime systems,” 52nd International Conference on Parallel Processing (ICPP 2023), Salt Lake City, Utah, ACM, August 2023.
Dewolfs, D., J. Broeckhove, V. Sunderam, and G. Fagg, FT-MPI, Fault-Tolerant Metacomputing and Generic Name Services: A Case Study,” Lecture Notes in Computer Science, vol. 4192, no. ICL-UT-06-14: Springer Berlin / Heidelberg, pp. 133-140, 00 2006.  (362.44 KB)
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, A Survey of Recent Developments in Parallel Implementations of Gaussian Elimination,” Concurrency and Computation: Practice and Experience, vol. 27, issue 5, pp. 1292-1309, April 2015.  (783.45 KB)
Donfack, S., S. Tomov, and J. Dongarra, Dynamically balanced synchronization-avoiding LU factorization with multicore and GPUs,” University of Tennessee Computer Science Technical Report, no. ut-cs-13-713, July 2013.  (659.77 KB)
Donfack, S., S. Tomov, and J. Dongarra, Dynamically balanced synchronization-avoiding LU factorization with multicore and GPUs,” Fourth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS 2014, May 2014.  (490.08 KB)
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, On Algorithmic Variants of Parallel Gaussian Elimination: Comparison of Implementations in Terms of Performance and Numerical Properties,” University of Tennessee Computer Science Technical Report, no. UT-CS-13-715, July 2013, 2012.  (358.98 KB)
Donfack, S., S. Tomov, and J. Dongarra, Performance evaluation of LU factorization through hardware counter measurements,” University of Tennessee Computer Science Technical Report, no. ut-cs-12-700, October 2012.  (794.82 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018.  (2.18 MB)
Dong, T., V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, A Step towards Energy Efficient Computing: Redesigning A Hydrodynamic Application on CPU-GPU,” IPDPS 2014, Phoenix, AZ, IEEE, May 2014.  (1.01 MB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, A Fast Batched Cholesky Factorization on a GPU,” International Conference on Parallel Processing (ICPP-2014), Minneapolis, MN, September 2014.  (1.37 MB)
Dong, T., V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, Hydrodynamic Computation with Hybrid Programming on CPU-GPU Clusters,” University of Tennessee Computer Science Technical Report, no. ut-cs-13-714, July 2013.  (866.68 KB)
Dong, T., T. Kolev, R. Rieben, V. Dobrev, S. Tomov, and J. Dongarra, Acceleration of the BLAST Hydro Code on GPU,” Supercomputing '12 (poster), Salt Lake City, Utah, SC12, November 2012.
Dong, T., A. Haidar, P. Luszczek, J. Harris, S. Tomov, and J. Dongarra, LU Factorization of Small Matrices: Accelerating Batched DGETRF on the GPU,” 16th IEEE International Conference on High Performance Computing and Communications (HPCC), Paris, France, IEEE, August 2014.  (684.73 KB)
Dong, T., A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, and J. Dongarra, MAGMA Batched: A Batched BLAS Approach for Small Matrix Factorizations and Applications on GPUs,” Innovative Computing Laboratory Technical Report, no. ICL-UT-16-02: University of Tennessee, August 2016.  (929.79 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Optimizing the SVD Bidiagonalization Process for a Batch of Small Matrices,” International Conference on Computational Science (ICCS 2017), Zurich, Switzerland, Procedia Computer Science, June 2017.  (364.95 KB)
Dongarra, J., High Performance Computing Trends, Supercomputers, Clusters, and Grids,” Information Processing Society of Japan Symposium Series, vol. 2003, no. 14, pp. 55-58, January 2003.
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, High Performance Matrix Inversion Based on LU Factorization for Multicore Architectures,” Proceedings of MTAGS11, Seattle, WA, November 2011.  (879.49 KB)
Dongarra, J., M. A. Heroux, and P. Luszczek, High-Performance Conjugate-Gradient Benchmark: A New Metric for Ranking High-Performance Computing Systems,” The International Journal of High Performance Computing Applications, 2015.  (336.19 KB)
Dongarra, J., H. Meuer, and E. Strohmaier, Top500 Supercomputer Sites (15th edition),” University of Tennessee Computer Science Department Technical Report, no. UT-CS-00-442, June 2000.  (278.88 KB)
Dongarra, J., Report on the TianHe-2A System,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-04: University of Tennessee, September 2017.  (7.15 MB)
Dongarra, J., M. Gates, P. Luszczek, and S. Tomov, Translational Process: Mathematical Software Perspective,” Journal of Computational Science, September 2020.  (752.59 KB)
Dongarra, J., G. Bosilca, R. Delmas, and J. Langou, Algorithmic Based Fault Tolerance Applied to High Performance Computing,” Journal of Parallel and Distributed Computing, vol. 69, pp. 410-416, 00 2009.  (313.55 KB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Achieving Numerical Accuracy and High Performance using Recursive Tile LU Factorization,” University of Tennessee Computer Science Technical Report (also as a LAWN), no. ICL-UT-11-08, September 2011.  (618.53 KB)
Dongarra, J., J-F. Pineau, Y. Robert, Z. Shi, and F. Vivien, Revisiting Matrix Product on Master-Worker Platforms,” International Journal of Foundations of Computer Science (IJFCS), vol. 19, no. 6, pp. 1317-1336, December 2008.  (248.66 KB)
Dongarra, J., H. Meuer, H. D. Simon, and E. Strohmaier, Recent Trends in High Performance Computing,” in Birth of Numerical Analysis (to appear), 00 2009.
Dongarra, J., J-F. Pineau, Y. Robert, and F. Vivien, Matrix Product on Heterogeneous Master Worker Platforms,” 2008 PPoPP Conference, Salt Lake City, Utah, January 2008.
Dongarra, J., and V. Eijkhout, Finite-choice Algorithm Optimization in Conjugate Gradients (LAPACK Working Note 159),” University of Tennessee Computer Science Technical Report, UT-CS-03-502, January 2003.  (64.52 KB)
Dongarra, J., Performance of Various Computers Using Standard Linear Equations Software (Linpack Benchmark Report),” University of Tennessee Computer Science Dept. Technical Report CS-89-85, 00 2007.  (6.42 MB)
Dongarra, J., LINPACK on Future Manycore and GPu Based Systems,” PARA 2010, Reykjavik, Iceland, June 2010.
Dongarra, J., and A. J. van der Steen, High Performance Computing Systems: Status and Outlook,” Acta Numerica, vol. 21, Cambridge, UK, Cambridge University Press, pp. 379-474, May 2012.  (1.48 MB)
Dongarra, J., S. Hammarling, N. J. Higham, S. Relton, P. Valero-Lara, and M. Zounon, The Design and Performance of Batched BLAS on Modern High-Performance Computing Systems,” International Conference on Computational Science (ICCS 2017), Zürich, Switzerland, Elsevier, June 2017.  (446.14 KB)
Dongarra, J., G. H. Golub, E. Grosse, C. Moler, and K. Moore, Netlib and NA-Net: Building a Scientific Computing Community,” IEEE Annals of the History of Computing, vol. 30, no. 2, pp. 30-41, January 2008.  (352.71 KB)
Dongarra, J., H. Jagode, A. Danalis, D. Barry, and V. Weaver, Performance Application Programming Interface for Extreme-Scale Environments (PAPI-EX) (Poster) , Seattle, WA, 2020 NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) Principal Investigator Meeting, 20 2020.  (2.53 MB)
Dongarra, J., J-F. Pineau, Y. Robert, Z. Shi, and F. Vivien, Revisiting Matrix Product on Master-Worker Platforms,” International Journal of Foundations of Computer Science (IJFCS) (accepted), 00 2007.  (248.66 KB)
Dongarra, J., and A. Geist, Report on the Oak Ridge National Laboratory's Frontier System,” ICL Technical Report, no. ICL-UT-22-05, May 2022.  (16.87 MB)
Dongarra, J., A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and A. YarKhan, Model-Driven One-Sided Factorizations on Multicore, Accelerated Systems,” Supercomputing Frontiers and Innovations, vol. 1, issue 1, 2014.  (1.86 MB)
Dongarra, J., P. Beckman, T. Moore, P. Aerts, G. Aloisio, J-C. Andre, D. Barkai, J-Y. Berthou, T. Boku, B. Braunschweig, et al., The International Exascale Software Project Roadmap,” International Journal of High Performance Computing, vol. 25, no. 1, pp. 3-60, January 2011.  (719.74 KB)
Dongarra, J., J. Kurzak, P. Luszczek, and S. Tomov, Dense Linear Algebra on Accelerated Multicore Hardware,” High Performance Scientific Computing: Algorithms and Applications, London, UK, Springer-Verlag, 00 2012.

Pages