Publications

Export 1280 results:
Filters: 10.1016 is j.parco.2021.102856  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Haidar, A., S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers,” The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Dallas, TX, IEEE, November 2018.  (642.51 KB)
Haidar, A., P. Luszczek, S. Tomov, and J. Dongarra, Heterogeneous Acceleration for Linear Algebra in Mulit-Coprocessor Environments,” VECPAR 2014, Eugene, OR, June 2014.  (276.52 KB)
Haidar, A., J. Dongarra, K. Kabir, M. Gates, P. Luszczek, S. Tomov, and Y. Jia, HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi,” Scientific Programming, vol. 23, issue 1, January 2015.  (553.94 KB)
Haidar, A., S. Tomov, K. Arturov, M. Guney, S. Story, and J. Dongarra, LU, QR, and Cholesky Factorizations: Programming Model, Performance Analysis and Optimization Techniques for the Intel Knights Landing Xeon Phi,” IEEE High Performance Extreme Computing Conference (HPEC'16), Waltham, MA, IEEE, September 2016.  (943.23 KB)
Haidar, A., A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Dongarra, The Design of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic and Iterative Refinement Techniques,” International Conference on Computational Science (ICCS 2018), vol. 10860, Wuxi, China, Springer, pp. 586–600, June 2018.  (487.88 KB)
Haidar, A., S. Tomov, P. Luszczek, and J. Dongarra, MAGMA Embedded: Towards a Dense Linear Algebra Library for Energy Efficient Extreme Computing,” 2015 IEEE High Performance Extreme Computing Conference (HPEC ’15), (Best Paper Award), Waltham, MA, IEEE, September 2015.  (678.86 KB)
Haidar, A., A. Abdelfattah, S. Tomov, and J. Dongarra, Harnessing GPU's Tensor Cores Fast FP16 Arithmetic to Speedup Mixed-Precision Iterative Refinement Solvers and Achieve 74 Gflops/Watt on Nvidia V100 , San Jose, CA, GPU Technology Conference (GTC), Poster, March 2018.  (2.96 MB)
Haidar, A., H. Ltaeif, A. YarKhan, and J. Dongarra, Analysis of Dynamically Scheduled Tile Algorithms for Dense Linear Algebra on Multicore Architectures,” University of Tennessee Computer Science Technical Report, UT-CS-11-666, (also Lawn 243), March 2011.  (1.65 MB)
Haidar, A., J. Kurzak, G. Pichon, and M. Faverge, A Data Flow Divide and Conquer Algorithm for Multicore Architecture,” 29th IEEE International Parallel & Distributed Processing Symposium (IPDPS), Hyderabad, India, IEEE, May 2015.  (535.44 KB)
Haidar, A., P. Wu, S. Tomov, and J. Dongarra, Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,” ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, Denver, CO, ACM.  (766.35 KB)
Haidar, A., C. Cao, I. Yamazaki, J. Dongarra, M. Gates, P. Luszczek, and S. Tomov, Performance and Portability with OpenCL for Throughput-Oriented HPC Workloads Across Accelerators, Coprocessors, and Multicore Processors,” 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '14), New Orleans, LA, IEEE, November 2014.  (407.5 KB)
Haidar, A., P. Luszczek, J. Kurzak, and J. Dongarra, An Improved Parallel Singular Value Algorithm and Its Implementation for Multicore Hardware,” Supercomputing 2013, Denver, CO, November 2013.
Haidar, A., A. YarKhan, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, Flexible Linear Algebra Development and Scheduling with Cholesky Factorization,” 17th IEEE International Conference on High Performance Computing and Communications, Newark, NJ, August 2015.  (494.31 KB)
Haidar, A., H. Ltaeif, P. Luszczek, and J. Dongarra, A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in a Two-Stage Bidiagonal Reduction,” IPDPS 2012, Shanghai, China, May 2012.  (480.43 KB)
Haidar, A., H. Ltaeif, and J. Dongarra, Toward High Performance Divide and Conquer Eigensolver for Dense Symmetric Matrices.,” Submitted to SIAM Journal on Scientific Computing (SISC), 00 2011.
Haidar, A., H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems,” Proceedings of the Royal Society A, vol. 476, issue 2243, November 2020.  (2.24 MB)
Haidar, A., C. Cao, J. Dongarra, P. Luszczek, and S. Tomov, Unified Development for Mixed Multi-GPU and Multi-Coprocessor Environments using a Lightweight Runtime Environment,” IPDPS 2014, Phoenix, AZ, IEEE, May 2014.  (1.51 MB)
Haidar, A., H. Ltaeif, and J. Dongarra, Parallel Reduction to Condensed Forms for Symmetric Eigenvalue Problems using Aggregated Fine-Grained and Memory-Aware Kernels,” University of Tennessee Computer Science Technical Report, UT-CS-11-677, (also Lawn254), August 2011.  (636.01 KB)
Haidar, A., H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra, Power-Aware HPC on Intel Xeon Phi KNL Processors , Frankfurt, Germany, ISC High Performance (ISC17), Intel Booth Presentation, June 2017.  (5.87 MB)
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Tile QR Factorization with Parallel Panel Processing for Multicore Architectures,” accepted in 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010), Atlanta, GA, December 2009.
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Tall and Skinny QR Matrix Factorization Using Tile Algorithms on Multicore Architectures,” Innovative Computing Laboratory Technical Report (also LAPACK Working Note 222 and CS Tech Report UT-CS-09-645), no. ICL-UT-09-03, September 2009.  (464.23 KB)
Hadri, B., E. Agullo, and J. Dongarra, Tile QR Factorization with Parallel Panel Processing for Multicore Architectures,” 24th IEEE International Parallel and Distributed Processing Symposium (submitted), 00 2010.  (313.98 KB)
Hadri, B., H. Ltaeif, E. Agullo, and J. Dongarra, Enhancing Parallelism of Tile QR Factorization for Multicore Architectures,” Submitted to Transaction on Parallel and Distributed Systems, December 2009.  (464.23 KB)
G
Gustavson, F. G., J. Wasniewski, and J. Dongarra, Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution and Inversion,” University of Tennessee Computer Science Technical Report, UT-CS-08-614 (also LAPACK Working Note 199), April 2008.  (896.03 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, and J. Langou, Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution and Inversion,” ACM Transactions on Mathematical Software (TOMS), vol. 37, no. 2, April 2010.  (896.03 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, J. Herrero, and J. Langou, Level-3 Cholesky Factorization Routines Improve Performance of Many Cholesky Algorithms,” ACM Transactions on Mathematical Software (TOMS), vol. 39, issue 2, February 2013.  (439.46 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, and J. Langou, Rectangular Full Packed Format for Cholesky’s Algorithm: Factorization, Solution, and Inversion,” ACM Transactions on Mathematical Software (TOMS), vol. 37, no. 2, Atlanta, GA, April 2010.  (896.03 KB)
Gustavson, F. G., J. Wasniewski, and J. Dongarra, Level-3 Cholesky Kernel Subroutine of a Fully Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm,” ACM TOMS (submitted), also LAPACK Working Note (LAWN) 211, 00 2010.  (190.2 KB)
Gustavson, F. G., J. Wasniewski, J. Dongarra, and J. Langou, Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution and Inversion,” ACM TOMS (to appear), 00 2009.  (896.03 KB)
Guidry, M., and A. Haidar, On the Design, Autotuning, and Optimization of GPU Kernels for Kinetic Network Simulations Using Fast Explicit Integration and GPU Batched Computation , Oak Ridge, TN, Joint Institute for Computational Sciences Seminar Series, Presentation, September 2015.  (17.25 MB)
Grützmacher, T., H. Anzt, and E. S. Quintana‐Ortí, Using Ginkgo's memory accessor for improving the accuracy of memory‐bound low precision BLAS,” Software: Practice and Experience, vol. 532, issue 1, pp. 81 - 98, January Jan.
Gruetzmacher, T., T. Cojean, G. Flegar, F. Göbel, and H. Anzt, A Customized Precision Format Based on Mantissa Segmentation for Accelerating Sparse Linear Algebra,” Concurrency and Computation: Practice and Experience, vol. 40319, issue 262, January 2019.
Abdelfattah, A., S. Tomov, and J. Dongarra, Batch QR Factorization on GPUs: Design, Optimization, and Tuning,” Lecture Notes in Computer Science, vol. 13350, Cham, Springer International Publishing, June 2022.
Graham, R. L., R. Brightwell, B. Barrett, G. Bosilca, and J. Pjesivac–Grbovic, An Evaluation of Open MPI's Matching Transport Layer on the Cray XT,” EuroPVM/MPI 2007, September 2007.  (369.01 KB)
Graham, R. L., G. M. Shipman, B. Barrett, R. Castain, G. Bosilca, and A. Lumsdaine, A High-Performance, Heterogeneous MPI,” HeteroPar 2006, Barcelona, Spain, September 2006.  (193.73 KB)
Graham, R. L., G. Bosilca, and J. Pjesivac–Grbovic, A Comparison of Application Performance Using Open MPI and Cray MPI,” Cray User Group, CUG 2007, May 2007.  (248.83 KB)
Goebel, F., H. Anzt, T. Cojean, G. Flegar, and E. S. Quintana-Orti, Multiprecision Block-Jacobi for Iterative Triangular Solves,” European Conference on Parallel Processing (Euro-Par 2020): Springer, August 2020.
Giraud, L., J. Langou, and G.. Sylvand, On the Parallel Solution of Large Industrial Wave Propagation Problems,” Journal of Computational Acoustics (to appear), January 2005.  (1.08 MB)
Giraud, L., J. Langou, M. Rozložník, and J. van den Eshof, Rounding Error Analysis of the Classical Gram-Schmidt Orthogonalization Process,” Numerische Mathematik, vol. 101, no. 1, pp. 87-100, January 2005.  (157.48 KB)
Giraud, L., A. Haidar, and Y. Saad, Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D,” Numerical Mathematics: Theory, Methods and Applications, vol. 3, no. 3, Beijing, Golbal Science Press, pp. 64-82, 00 2010.
Giraud, L., A. Haidar, and S. Pralet, Using multiple levels of parallelism to enhance the performance of domain decomposition solvers,” Parallel Computing, vol. 36, no. 5-6: Elsevier journals, pp. 285-296, 00 2010.  (418.57 KB)
Ghysels, P., S. Li, A. YarKhan, and J. Dongarra, Initial Integration and Evaluation of SLATE and STRUMPACK,” Innovative Computing Laboratory Technical Report, no. ICL-UT-18-11: University of Tennessee, December 2018.  (249.78 KB)
Gerndt, M., and K. Fürlinger, Specification and detection of performance problems with ASL,” Concurrency and Computation: Practice and Experience, vol. 19, no. 11: John Wiley and Sons Ltd., pp. 1451-1464, January 2007.
Genet, D., A. Guermouche, and G. Bosilca, Assembly Operations for Multicore Architectures using Task-Based Runtime Systems,” Euro-Par 2014, Porto, Portugal, Springer International Publishing, August 2014.  (481.52 KB)
Gates, M., H. Anzt, J. Kurzak, and J. Dongarra, Accelerating Collaborative Filtering for Implicit Feedback Datasets using GPUs,” 2015 IEEE International Conference on Big Data (IEEE BigData 2015), Santa Clara, CA, IEEE, November 2015.  (1.02 MB)
Gates, M., J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library,” International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), Denver, CO, ACM, November 2019.  (2.01 MB)
Gates, M., A. Haidar, and J. Dongarra, Accelerating Eigenvector Computation in the Nonsymmetric Eigenvalue Problem,” VECPAR 2014, Eugene, OR, June 2014.  (199.44 KB)
Gates, M., S. Tomov, and J. Dongarra, Accelerating the SVD Two Stage Bidiagonal Reduction and Divide and Conquer Using GPUs,” Parallel Computing, vol. 74, pp. 3–18, May 2018.  (1.34 MB)
Gates, M., A. Charara, A. YarKhan, D. Sukkari, M. Al Farhan, and J. Dongarra, Performance Tuning SLATE,” SLATE Working Notes, no. 14, ICL-UT-20-01: Innovative Computing Laboratory, University of Tennessee, January 2020.  (1.29 MB)
Gates, M., J. Kurzak, A. YarKhan, A. Charara, J. Finney, D. Sukkari, M. Al Farhan, I. Yamazaki, P. Wu, and J. Dongarra, SLATE Tutorial , Houston, TX, 2020 ECP Annual Meeting, February 2020.  (12.14 MB)

Pages