Publications

Export 1274 results:
Filters: 10.1007 is 978-3-030-66057-4_11  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Danalis, A., H. Jagode, and J. Dongarra, Is your scheduling good? How would you know? , Bordeaux, France, 14th Scheduling for Large Scale Systems Workshop, June 2019.  (2.5 MB)
Danalis, A., H. Jagode, and J. Dongarra, PAPI: Counting outside the Box , Barcelona, Spain, 8th JLESC Meeting, April 2018.
Davis, J., T. Gao, S. Chandrasekaran, H. Jagode, A. Danalis, P. Balaji, J. Dongarra, and M. Taufer, Characterization of Power Usage and Performance in Data-Intensive Applications using MapReduce over MPI,” 2019 International Conference on Parallel Computing (ParCo2019), Prague, Czech Republic, September 2019.
Demmel, J., J. Dongarra, J. Langou, J. Langou, P. Luszczek, and M. Mahoney, Prospectus for the Next LAPACK and ScaLAPACK Libraries: Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collaboration (BALLISTIC),” LAPACK Working Notes, no. 297, ICL-UT-20-07: University of Tennessee.  (1.41 MB)
Demmel, J., J. Dongarra, B.. Parlett, W. Kahan, M. Gu, D. Bindel, Y. Hida, X. Li, O. Marques, J. E. Riedy, et al., Prospectus for the Next LAPACK and ScaLAPACK Libraries,” PARA 2006, Umea, Sweden, June 2006.  (460.11 KB)
Demmel, J., and J. Dongarra, LAPACK 2005 Prospectus: Reliable and Scalable Software for Linear Algebra Computations on High End Computers : LAPACK Working Note 164, January 2005.  (172.59 KB)
Demmel, J., J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley, and K. Yelick, Self Adapting Linear Algebra Algorithms and Software,” IEEE Proceedings (to appear), 00 2004.  (587.67 KB)
Demmel, J., J. Dongarra, A. Fox, S. Williams, V. Volkov, and K. Yelick, Accelerating Time-To-Solution for Computational Science and Engineering,” SciDAC Review, 00 2009.  (739.11 KB)
Dempsey, B., and D. Weiss, Towards An Efficient, Scalable Replication Mechanism for the I2-DSI Project,” University of North Carolina School of Library and Information Science Technical Report, no. TR-1999-01, January 1999.
Deshmukh, S., R. Yokota, and G. Bosilca, Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD, and Fujitsu Processors,” ACM Transactions on Mathematical Software, vol. 49, issue 3, pp. 1 - 29, September 2023.
Deshmukh, S., R. Yokota, G. Bosilca, and Q. Ma, O(N) distributed direct factorization of structured dense matrices using runtime systems,” 52nd International Conference on Parallel Processing (ICPP 2023), Salt Lake City, Utah, ACM, August 2023.
Dewolfs, D., J. Broeckhove, V. Sunderam, and G. Fagg, FT-MPI, Fault-Tolerant Metacomputing and Generic Name Services: A Case Study,” Lecture Notes in Computer Science, vol. 4192, no. ICL-UT-06-14: Springer Berlin / Heidelberg, pp. 133-140, 00 2006.  (362.44 KB)
Donfack, S., S. Tomov, and J. Dongarra, Dynamically balanced synchronization-avoiding LU factorization with multicore and GPUs,” University of Tennessee Computer Science Technical Report, no. ut-cs-13-713, July 2013.  (659.77 KB)
Donfack, S., S. Tomov, and J. Dongarra, Dynamically balanced synchronization-avoiding LU factorization with multicore and GPUs,” Fourth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS 2014, May 2014.  (490.08 KB)
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, On Algorithmic Variants of Parallel Gaussian Elimination: Comparison of Implementations in Terms of Performance and Numerical Properties,” University of Tennessee Computer Science Technical Report, no. UT-CS-13-715, July 2013, 2012.  (358.98 KB)
Donfack, S., S. Tomov, and J. Dongarra, Performance evaluation of LU factorization through hardware counter measurements,” University of Tennessee Computer Science Technical Report, no. ut-cs-12-700, October 2012.  (794.82 KB)
Donfack, S., J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki, A Survey of Recent Developments in Parallel Implementations of Gaussian Elimination,” Concurrency and Computation: Practice and Experience, vol. 27, issue 5, pp. 1292-1309, April 2015.  (783.45 KB)
Dong, T., T. Kolev, R. Rieben, V. Dobrev, S. Tomov, and J. Dongarra, Acceleration of the BLAST Hydro Code on GPU,” Supercomputing '12 (poster), Salt Lake City, Utah, SC12, November 2012.
Dong, T., A. Haidar, P. Luszczek, J. Harris, S. Tomov, and J. Dongarra, LU Factorization of Small Matrices: Accelerating Batched DGETRF on the GPU,” 16th IEEE International Conference on High Performance Computing and Communications (HPCC), Paris, France, IEEE, August 2014.  (684.73 KB)
Dong, T., A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, and J. Dongarra, MAGMA Batched: A Batched BLAS Approach for Small Matrix Factorizations and Applications on GPUs,” Innovative Computing Laboratory Technical Report, no. ICL-UT-16-02: University of Tennessee, August 2016.  (929.79 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Optimizing the SVD Bidiagonalization Process for a Batch of Small Matrices,” International Conference on Computational Science (ICCS 2017), Zurich, Switzerland, Procedia Computer Science, June 2017.  (364.95 KB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, Accelerating the SVD Bi-Diagonalization of a Batch of Small Matrices using GPUs,” Journal of Computational Science, vol. 26, pp. 237–245, May 2018.  (2.18 MB)
Dong, T., V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, A Step towards Energy Efficient Computing: Redesigning A Hydrodynamic Application on CPU-GPU,” IPDPS 2014, Phoenix, AZ, IEEE, May 2014.  (1.01 MB)
Dong, T., A. Haidar, S. Tomov, and J. Dongarra, A Fast Batched Cholesky Factorization on a GPU,” International Conference on Parallel Processing (ICPP-2014), Minneapolis, MN, September 2014.  (1.37 MB)
Dong, T., V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, Hydrodynamic Computation with Hybrid Programming on CPU-GPU Clusters,” University of Tennessee Computer Science Technical Report, no. ut-cs-13-714, July 2013.  (866.68 KB)
Dongarra, J., High Performance Computing Trends, Supercomputers, Clusters, and Grids,” Information Processing Society of Japan Symposium Series, vol. 2003, no. 14, pp. 55-58, January 2003.
Dongarra, J., E. Jeannot, E. Saule, and Z. Shi, Bi-objective Scheduling Algorithms for Optimizing Makespan and Reliability on Heterogeneous Systems,” 19th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (submitted), San Diego, CA, June 2007.  (223.82 KB)
Dongarra, J., and P. Beckman, International Exascale Software Project Roadmap v1.0,” University of Tennessee Computer Science Technical Report, UT-CS-10-654, May 2010.  (719.74 KB)
Dongarra, J., H. Meuer, and E. Strohmaier, Top500 Supercomputer Sites (15th edition),” University of Tennessee Computer Science Department Technical Report, no. UT-CS-00-442, June 2000.  (278.88 KB)
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018.  (2.53 MB)
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
Dongarra, J., P. Luszczek, and A. Petitet, The LINPACK Benchmark: Past, Present, and Future,” Concurrency: Practice and Experience, vol. 15, pp. 803-820, 00 2008.  (94.86 KB)
Dongarra, J., and V. Eijkhout, Finite-choice Algorithm Optimization in Conjugate Gradients (LAPACK Working Note 159),” University of Tennessee Computer Science Technical Report, UT-CS-03-502, January 2003.  (64.52 KB)
Dongarra, J., G. H. Golub, C. Moler, and K. Moore, Netlib and NA-Net: building a scientific computing community,” In IEEE Annals of the History of Computing (to appear), August 2007.  (352.71 KB)
Dongarra, J., The evolution of mathematical software,” Communications of the ACM, vol. 65227, issue 12, pp. 66 - 72, December 2022.
Dongarra, J., M. Gates, P. Luszczek, and S. Tomov, Translational process: Mathematical software perspective,” Journal of Computational Science, vol. 52, pp. 101216, 2021.
Dongarra, J., and V. Eijkhout, Numerical Linear Algebra,” Encyclopedia of Computer Science and Technology, eds. Kent, A., Williams, J., vol. 41, pp. 207-233, August 1999.  (262 KB)
Dongarra, J., K. London, S. Moore, P. Mucci, and D. Terpstra, Using PAPI for Hardware Performance Monitoring on Linux Systems,” Conference on Linux Clusters: The HPC Revolution, Urbana, Illinois, Linux Clusters Institute, June 2001.  (422.35 KB)
Dongarra, J., Performance of Various Computers Using Standard Linear Equations Software, (Linpack Benchmark Report),” University of Tennessee Computer Science Technical Report, no. CS-89-85: University of Tennessee, June 2014.  (514.64 KB)
Dongarra, J., Performance of Various Computers Using Standard Linear Equations Software (Linpack Benchmark Report),” University of Tennessee Computer Science Department Technical Report, CS-89-85, January 2004.  (6.42 MB)
Dongarra, J., and S. Tomov, An Introduction to the MAGMA project - Acceleration of Dense Linear Algebra : NVIDIA Webinar, June 2010.
Dongarra, J., M. Faverge, T. Herault, M. Jacquelin, J. Langou, and Y. Robert, Hierarchical QR Factorization Algorithms for Multi-core Cluster Systems,” Parallel Computing, vol. 39, issue 4-5, pp. 212-232, May 2013.  (1.43 MB)
Dongarra, J., H. Ltaeif, P. Luszczek, and V. M. Weaver, Energy Footprint of Advanced Dense Numerical Linear Algebra using Tile Algorithms on Multicore Architecture,” The 2nd International Conference on Cloud and Green Computing (submitted), Xiangtan, Hunan, China, November 2012.  (329.5 KB)
Dongarra, J., and J. Langou, The Problem with the Linpack Benchmark Matrix Generator,” University of Tennessee Computer Science Technical Report, UT-CS-08-621 (also LAPACK Working Note 206), June 2008.  (136.41 KB)
Dongarra, J., Z. Chen, G. Bosilca, and J. Langou, Disaster Survival Guide in Petascale Computing: An Algorithmic Approach,” in Petascale Computing: Algorithms and Applications (to appear): Chapman & Hall - CRC Press, 00 2007.  (260.18 KB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting,” Concurrency and Computation: Practice and Experience, vol. 26, issue 7, pp. 1408-1431, May 2014.  (1.96 MB)
Dongarra, J., Measuring Computer Performance: A Practioner's Guide,” SIAM Review (book review), vol. 43, no. 2, pp. 383-384, 00 2001.  (558.9 KB)
Dongarra, J., P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina, T. Moore, R. Stevens, A. Trefethen, et al., The International Exascale Software Project: A Call to Cooperative Action by the Global High Performance Community,” International Journal of High Performance Computing Applications (to appear), July 2009.  (203.04 KB)
Dongarra, J., and P. Luszczek, High Performance Development for High End Computing with Python Language Wrapper (PLW),” International Journal for High Performance Computer Applications, vol. 21, no. 3, pp. 360-369, 00 2007.  (179.32 KB)
Dongarra, J., A Tribute to Gene Golub,” Computing in Science and Engineering: IEEE, pp. 5, January 2008.

Pages