
In: Book Title
Editor: Editor Name, pp. 141-181

ISBN 0000000000
c© 2006 Nova Science Publishers, Inc.

Chapter 1

HIGH PERFORMANCE GRIDRPC MIDDLEWARE

Yves Caniou∗, Eddy Caron†, and Frédéric Desprez‡

Université de Lyon, LIP, CNRS-ENS-Lyon-UCBL-INRIA, France
Hidemoto Nakada§and Yoshio Tanaka¶

National Institute of Advanced Science and Technology,
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

Keith Seymour‖

Electrical Engineering and Computer Science Department,
University of Tennessee, Knoxville, TN, USA

Abstract

A simple way to offer a Grid access through a middleware is to use the GridRPC
paradigm. It is based on the classical RPC model and extended to Grid environments.
Client can access to remote servers as simply as a function call. Several middlewares
are compliant to this paradigm as DIET, GridSolve, or Ninf-G. Actors of these projects
have worked together to design a standard API within the Open Grid Forum. In this
chapter we give an overview of this standard and the current works around the data
management. Three use cases are introduced through a detailled descriptions of DIET,
GridSolve, and Ninf-G middleware features. Finally applications for each middleware
are shown to appreciate how they take benefit of the GridRPC API.

Key Words: GridRPC, Network Enabled Systems, Programming API

∗UCBL, E-mail address: Yves.Caniou@ens-lyon.fr
†ENS Lyon, E-mail address: Eddy.Caron@ens-lyon.fr
‡INRIA, E-mail address: Frederic.Desprez@inria.fr
§E-mail address: hide-nakada@aist.go.jp
¶E-mail address: yoshio.tanaka@aist.go.jp
‖E-mail address: seymour@cs.utk.edu

142 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

1 Introduction

Large problems coming from numerical simulation or life science can now be solved
through the Internet using grid middleware [10, 27]. Transparency and ease of use is some-
times more important for a user than raw performance. Along with researches and develop-
ment around middleware and services for grids, researchers and developers have been work-
ing on programming issues of large scale distributed systems. Several approaches co-exist
to port application on grid platforms like classical message-passing [33, 38], batch pro-
cessing [57, 67], web portals [28, 30, 32], workflow management systems [23, 29, 45, 70],
object-oriented approaches [7, 68].

Among existing middleware and application programming approaches [34], one sim-
ple, powerful, and flexible approach consists in using servers available in different ad-
ministrative domains through the classical client-server or Remote Procedure Call (RPC)
paradigm. Network Enabled Servers (NES) [35] implement this model, which is also called
GridRPC [53]. Clients submit computation requests to a scheduler whose goal is to find a
server available on the grid. Scheduling is frequently applied to balance the work among
the servers and a list of available servers is sent back to the client; the client is then able to
send the data and the request to one of the suggested servers to solve its problem. Thanks to
the growth of network bandwidth and the reduction of network latency, small computation
requests can now be sent to servers available on the grid. To make effective use of today’s
scalable resource platforms, it is important to ensure scalability in the middleware layers as
well. This service oriented approach is not new.

Several research projects have targeted this paradigm in the past. The main middle-
wares implementing the API are the ones presented here, i.e. NetSolve/GridSolve, Ninf,
and DIET but some other environments support it like OmmiRPC [50], XtremWeb [14],
and the SAGA interface from the OGF. The RPC model over the internet has also been
used for several applications. In [24], the authors describe the use of remote computa-
tions available as services for optmization problems. Transparently through the Internet,
large optimization problems can be solved using different approaches by simply filling a
web page. Remote mage processing computations are described in [5] and mathematical
libraries in [12]. Some systems target clusters like OVM [11] or they can be linked with
languages like OpenMP [51]. Even P2P systems can be used using this model like with
XtremWeb [14] and also having fault-tolerance embedded in the middleware itself [21].
This approach of providing computation services through the Internet is also highly close
to the Service Oriented Computing (SOA) paradigm [44].

The goal of this chapter is first to describe the API itself and its extensions for data
management in Section 2. Then, in Sections 3, 4 and 5, we review three existing implemen-
tations over heavily used middleware platforms. This presentation allows to understand
how performance can be obtained from these middleware using the GridRPC API. Finally,
before a conclusion, we present in Section 6 applications from different fields ported using
the API over several grids.

High Performance GridRPC Middleware 143

2 GridRPC API Presentation

One simple, yet effective, mean to execute jobs on a computing grid is to use a GridRPC
middleware, which relies on the GridRPC paradigm. Numerous implementations are cur-
rently available, such as DIET [20], NetSolve [69], Ninf [60], OmniRPC [50].

For each request, the GridRPC middleware manages the management of the submission,
of the input and output data, of the execution of the job on the remote resource, etc. To
make available a service, a programmer must implement two codes: a client, where data
are defined and which is run by the user when requesting the service, and a server, which
contains the implementation of the service which is executed on the remote resource.

One step to ease the development of such codes conducted to define a GridRPC
API [39], which has been proposed as a draft in September 2004 and which is an Open
Grid Forum (OGF) standard since September 2007. Thus a GridRPC source code can be
compiled and executed with any GridRPC compliant middleware.

Due to the difference in the choice of implementation of the GridRPC API, a document
describing the interoperability between GridRPC middleware has been written [62]. Its
main goals are to describe the difference in behaviour of the GridRPC middleware and to
propose a common test that all GridRPC middleware must pass. Nevertheless, it is not of
its purpose to make a common interoperable client, which could participate to different grid
middleware at the same time. This document is intended to be soon an Open Grid Forum
standard.

Discussions are currently undertaken on the data management within GridRPC mid-
dleware. A draft of an API has been proposed during the OGF’21 in October 2007. The
motivation for this document is to provide explicit functions to manipulate the data ex-
change between a GridRPC platform and a client since (1) the size of the data used in grid
applications may be large and useless data transfers must be avoided; (2) data are not al-
ways stored on the client side but may be made available either on a storage resource or
within the GridRPC platform.

In the following, we first describe the GridRPC API and the efforts concerning the
interoperability between implementations, and then we present the current work on defining
an API for GridRPC data management.

2.1 The GridRPC API and Interoperability Between Implementations

One of the goals of the GridRPC API is to clearly define the syntax and semantics for
GridRPC, which is the extension of the Remote Procedure Call (RPC) to grid environments.
Hence, end-user client/server applications can be written given the programming model.

2.1.1 The GridRPC Paradigm

The GridRPC model is pictured in Figure 1: (1) servers register their services to a registry;
(2) when a client needs the execution of a service, it contacts the registry and (3) the registry
returns a handle to the client; (4) then the client uses the handle to invoke the service on the
server and (5) eventually receives back the results.

144 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

Registry

Client ServiceCall

Results

Handle Register

Lookup
(1)

(2)
(3)

(4)

(5)

Figure 1: The GridRPC model.

2.1.2 The GridRPC API

Mechanisms involved in the API must provide means to make synchronous and/or asyn-
chronous calls to a service. If the latter, clients must also be able to wait in a blocking or
non-blocking manner after the completion of a given service. This naturally involves some
data structures and conducts to a rigorous definition of the functions of the API.

GridRPC Data Types
Three main data types are needed to implement the API: (1) grpc_function_handle_t is

the type of variables representing a remote function bound to a given server. Once allocated
by the client, such a variable can be used to launch the service as many times as desired.
It is explicitly invalidated by the user when not needed anymore; (2) grpc_session_t is the
type of variables used to identify a specific non-blocking GridRPC call. Such a variable is
mandatory to obtain information on the status of a job, in order for a client to wait after,
cancel or know the error status of a call; (3) grpc_error_t groups all kind of errors and
returns status codes involved in the GridRPC API.

GridRPC Functions
grpc_initialize() and grpc_finalize() functions are similar to the MPI initialize and

finalize calls. It is mandatory that any GridRPC call is performed in between these two
calls. They read configuration files, make the GridRPC environment ready and finish it.

In order to initialize and destruct a function handle, grpc_function_handle_init() and
grpc_function_handle_destruct() functions have to be called. Because a function handle
can be dynamically associated to a server, because of resource discovery mechanisms for
example, a call to grpc_function_handle_default() let to postpone the server selection
until the actual call is made on the handle.

grpc_get_handle() let the client retrieve the function handle corresponding to a session
ID (e.g., to a non-blocking call) that has been previously performed.

Depending on the type of the call, blocking or non-blocking, the client can use the
grpc_call() and grpc_call_async() function. If the latter, the client possesses after the call
a session ID which can be used to respectively probe or wait for completion, cancel the call

High Performance GridRPC Middleware 145

and check the error status of a non-blocking call.
After issuing a unique or numerous non-blocking calls, a client can use: grpc_probe()

to know if the execution of the service has completed; grpc_probe_or() to know if one of
the previous non-blocking calls has completed; grpc_cancel() to cancel a call; grpc_wait()
to block until the completion of the requested service; grpc_wait_and() to block until all
services corresponding to session IDs used as parameters are finished; grpc_wait_or() to
block until any of the service corresponding to session IDs used as parameters has finished;
grpc_wait_all() to block until all non-blocking calls have completed; and grpc_wait_any()
to wait until any previously issued non-blocking request has completed.

2.1.3 Presentation of the Interoperability Between Implementations

The Open Grid Forum standard describing the GridRPC API did not focus on the imple-
mentation of the API. Then, divergences in implementation have been observed. In order
to make a GridRPC client-server code reusable in all GridRPC middleware relying on the
GridRPC API, a work has been tackled to propose interoperability between implementa-
tions.

The paper [62] points out, with exhaustive test-cases, the differences and convergences
in behavior of the main GridRPC middleware implementations, namely DIET, Netsolve,
and Ninf. In addition, a program has been written to test the GridRPC compliance of all
middleware.

2.2 GridRPC Data Management API

The data management extension is designed to provide a way to explicitly manage the data
and their placement in the GridRPC model. With the help of this explicit data management,
the client will avoid useless transfers of large data. However, the client may not want to,
or may not know how to manage data. Then, the default behavior of the GridRPC Data
Management extension must be standardized.

In a GridRPC environment, data can be stored either on a client host, on a data storage
server, on a computational server or inside the GridRPC platform. When clients do not need
to manage their data, then the basic GridRPC API is sufficient. On each grpc_call(),
data is transferred between a client and the computational server used. Once the compu-
tation performed, results are sent back to the client. However, to minimize data transfers,
clients need data management functions. We can consider two kinds of data: (a) external
data and (b) internal data. External data are placed on servers, like data repositories. These
servers are not registered inside the platform but can be directly accessed to read/write data.
The use of such data implies several data transfers if the client uses the basic GridRPC
API: the client must download the data and then send it to the GridRPC platform when
issuing the call to grpc_call(). One of these transfers should be avoided: the client
may just give a data reference (also called handle) to the platform/server and the transfer is
completed by the platform/server. Examples of such Data Storage servers are IBP [46] and
SRB [6]. Among the different available examples of this approach in GridRPC environ-
ment, we can cite the Distributed Storage Infrastructure of NetSolve [8] or the utilization
of JuxMem in DIET [3]. Internal data are managed inside the GridRPC platform. Their

146 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

placement depends on computations and it may be transparent to clients: in this case, the
GridRPC middleware can manage data. Temporary data, generated by request sequenc-
ing [4], are examples of internal data. For instance, a client issues two calls to solve the
same problem and the second call uses input or output data from the first call. Other cases
of useless temporary data occur when the results of a simulation are sent to a graphical
viewer as done in most Problem Solving Environments (PSE). Among the examples of in-
ternal data management, we can cite the Data Tree Management infrastructure (DTM) used
in DIET [19], and the data layer OmniStorage in OmniRPC [1]. This approach is suitable
for, but not limited to, intermediate results to be reused in case of request sequencing.

In both cases, it is mandatory to identify each data. All data stored either in the plat-
form or on storage servers will be identified by Data Handles and Storage Information.
Without lack of generality, we define the GridRPC data type as either the data used for a
computational problem, either both a Data Handle and storage information. Indeed, when
a computational server receives a GridRPC data which does not contain the computational
data, it must know the unique name of the data with the Data Handle, and must know its
location to get it and where the client wants to save it after the computation. Thus storage
information must record the original location of the data and the destination of the data.

In [39], data used as input/output parameters are provided within the <varargs> no-
tation of the grpc_call() and grpc_call_async() functions. Without lack of
generality, and in order to propose an API independent of the language of implementa-
tion, we refer to grpc_data_t as the type of such variables. Thus, in the following,
a grpc_data_t is any kind of data, or contains a reference on the computational data,
which we call a Data Handle, as well as some Storage Information.

The GridRPC data includes at least the data or a data handle, and may contain some
information about the data itself (e.g., type, size) as well as information on its location
and the protocol used to access it (e.g., the URI of a specific server, a link with a Storage
Resource Broker, containing the correct protocol to use). A data handle is essentially a
unique reference to a data that may reside anywhere. Data and data handles can be created
separately. By managing GridRPC data with data handles, clients do not have to know
where data are currently stored.

2.2.1 GridRPC Data Management Data Type

A data in a GridRPC middleware is defined by the grpc_data_t type. It relies on a
data, or on a grpc_data_handle_t type and a grpc_data_storage_info_t type to access it.
Consequently, the grpc_data_t type can be seen as a structure containing the data itself
and/or a grpc_data_handle_t. The grpc_data_storage_info_t type can also be stored in the
grpc_data_t structure or it can also be stored and managed inside the GridRPC data mid-
dleware.

A variable of the grpc_data_handle_t type represents a specific data. It is allocated
by the user. After a data handle was initialized, it may be used in a server invocation.
The lifetime of a data handle is determined when the user invalidates it. Data handles are
created/allocated by simply creating a variable of this type.

Variables with grpc_data_storage_info_t type represent information on a specific data
which can be local or remote. It is at least composed of: (1) Two URIs, one to access the

High Performance GridRPC Middleware 147

data and one if the data has to be stored somewhere from this server (for example, an OUT
parameter to transfer at the end of a computation); (2) Information concerning the mode
of management. For example, data management is defaulted to the one of the standard
GridRPC paradigm, but it can be noted for example as GRPC_PERSISTENT, which cor-
responds to a transparent management by the GridRPC middleware, or GRPC_STICKY, in
which case the data cannot migrate but can be replicated; (3) Information concerning the
type of the data, as well as its size.

2.2.2 GridRPC Data Management Functions

The grpc_data_init() function initializes the GridRPC data with a specific data. This data
may be available locally or on a remote storage server. Both identifications can be used.
GridRPC data referencing input parameters must be initialized with identified data before
being used in a grpc_call(). GridRPC data referencing output parameters do not have
to be initialized. The function grpc_data_getinfo() let the user access information about
the grpc_data_t. It returns information on data characteristics, status, and location.

The grpc_data_write() function writes a GridRPC data to the output location set during
the init call in the output parameters fields. For commodity reasons, a diffusion mode and a
list of additional servers on which the data has to be uploaded can be provided. In that case,
the protocol defined during the init call is used. Some broadcast/multicast mechanisms can
then be implemented in the GridRPC data middleware in order to improve performance.
The diffusion mode can be used by more intelligent data middleware to diffuse a data in a
broadcast manner for example. A dual function called grpc_data_read() is available. After
calling this function, the data will be available in the GridRPC data type grpc_data_t,
which will also still contain the data handle.

The grpc_unbind_data() function is used by a client when it does not need the handle
on the GridRPC data anymore. To explicitly erase the data on a storage resource, the client
can call the grpc_free_data() function which frees the GridRPC data.

In order to communicate a reference between grid users, for example in case of large
size data, one should be able to store a GridRPC data. The location can then be shared,
for example by mail, an consequently the GridRPC data management API proposes two
functions: grpc_data_load() and grpc_data_save().

2.3 GridRPC Example

In the example described in Figure 2, we show how to re-use data on a specific server
without resending them. Client wants to compute C = C × An using the service "*" on
server karadoc. It shows how to use the GridRPC data management functions when the
data needs to be stored inside the platform, to keep the data on the same server, with the
help of the GRPC_STICKY mode.

2.3.1 Input Data

Data A will be used and will remain on server karadoc. We can use the GRPC_STICKY
parameter to keep the data on server karadoc. Data C is an input/output data. The first

148 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

grpc_function_handle_init(handle13,"karadoc.aist.go.jp","*");
grpc_data_init(&dhA,"LOCAL_MEMORY://britannia.ens-lyon.fr/&A","LOCAL_MEMORY://karadoc.aist.go.jp",

GRPC_DOUBLE, GRPC_STICKY);
grpc_data_init(&dhC, "NFS://britannia.ens-lyon.fr/home/user/C.in", "LOCAL_MEMORY://karadoc.aist.go.jp",

GRPC_DOUBLE, GRPC_STICKY);

for(i=0;i<n+1;i++)
{

if(i==1)
grpc_data_init(&dhC, "LOCAL_MEMORY://karadoc.aist.go.jp",NULL, DOUBLE, STICKY);

if(i==n)
grpc_data_init(&dhC, "LOCAL_MEMORY://karadoc.aist.go.jp","NFS://britannia.ens-lyon.fr/home/user/C.out",

GRPC_DOUBLE, GRPC_VOLATILE);

grpc_call(handle1,dhA,dhC,dhC);
}
grpc_data_free(dhA);
grpc_data_free(dhC);

Figure 2: GridRPC call with data management using persistence through the
GRPC_STICKY mode.

grpc_data_init for this data requires only an input location and the GRPC_STICKY
mode.

2.3.2 Output Data

Output data C is generated on server karadoc but only the last result is useful for the
client. Thus, to send the final result to the client we update the output location just before
the last grpc_call().

3 DIET

The Distributed Interactive Engineering Toolbox (DIET) [15, 20] project is focused on the
development of a scalable middleware with initial efforts focused on the distribution of the
scheduling problem across multiple agents. DIET consists of a set of elements that can
be used together to build applications using the GridRPC paradigm. This middleware is
able to find an appropriate server according to information given in the client request (e.g.,
problem to be solved, size of the data involved), the performance of the target platform
(e.g., server load, available memory, communication performance) and the local availabil-
ity of data stored during previous computations. The scheduler is distributed using several

High Performance GridRPC Middleware 149

collaborating hierarchies connected either statically or dynamically (in a peer-to-peer fash-
ion). Data management is provided to allow persistent data to stay within the system for
future re-use. This feature avoids unnecessary communication when dependencies exist
between different requests (e.g., in case of same or different requests using same data will
be executed on the same server). Servers have the possibility to launch several tasks in
a time-shared manner, or sequentially, making servers buffer some work [18] or on batch
systems.

3.1 DIET Architecture

!"#$%&'%()$*%+&,,-+./&,

!0.0%.'0,12-'.

!"#$%+&,,-+./&,

3-45-1.%!"#$

67/-,.

%8*

%8*

8* %8*

9#!

:*

67/-,.

67/-,.

67/-,.

9#!

9#!

9#!

9#!

9#!

:*

9#!

9#!

:*

:*

9#!

9#!

9#!

8*

8*

:*

9#!

:*

9#!
9#!

9#!

Figure 3: DIET hierarchical organization.

The DIET architecture is hierarchical for a better scalability. The architecture provides
flexibility and can be adapted to diverse environments including heterogeneous network hi-
erarchies. DIET is implemented in CORBA and thus benefits from the many standardized,
stable services provided by freely-available and high performance CORBA implementa-
tions. DIET is based on several components. A Client is an application that uses DIET

to solve problems using an RPC approach. Users can access DIET via different kinds of
client interfaces: web portals, PSEs such as Scilab, or from programs written in C or C++.
A SED, or server daemon, provides the interface to computational servers and can offer
any number of application specific computational services. A SED can serve as the inter-
face and execution mechanism for a stand-alone interactive machine, or it can serve as the
interface to a parallel supercomputer by providing submission services to a batch scheduler.

Agents provide higher-level services such as scheduling and data management. These
services are made scalable by distributing them across a hierarchy of agents composed of a
single Master Agent (MA) and any number of Local Agents (LAs). Each DIET hierarchy
is independent but the MA can connect to other MAs either statically or in a peer-to-peer

150 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

fashion to access resources available via other other hierarchies. Figure 3 shows an example
of several DIET hierarchies.

A Master Agent is an entry point of our environment. In order to access DIET schedul-
ing services, clients only need a string-based name for the MA (e.g., “MA1”) they wish to
access; this MA name is matched with a CORBA identifier object via a standard CORBA

naming service. Clients submit requests for a specific computational service to the MA.
The MA then forwards the request in the DIET hierarchy and the child agents, if any ex-
ist, forward the request onwards until the request reaches the SEDs. SEDs then evaluate
their own capacity to perform the requested service; capacity can be measured in a variety
of ways including an application-specific performance prediction, general server load, or
local availability of data-sets specifically needed by the application. SEDs forward their
responses back up in the agent hierarchy. Agents perform a distributed collation and reduc-
tion of server responses until finally the MA returns to the client a list of possible server
choices sorted using an objective function such as computation cost, communication cost,
or machine load. The client program may then submit the request directly to any of the
proposed servers, though typically the first server will be preferred as it is predicted to be
the most appropriate server. The client can submit several simultaneous requests through
the use of threading computation in the client code. However, the synchronous mode is not
the only request mode. The client can also use the asynchronous mode to submit requests
to the DIET hierarchy. When submitting an asynchronous request, the client will not wait
the end of the call. To be sure that the request has been well computed the user can use
“barriers” to wait for one or all of the ended submitted requests. The scheduling strategies
used in DIET are described in Section 3.2.

3.2 DIET SCHEDULING

3.2.1 Plug-in Schedulers

DIET provides a special feature for scheduling requests through its plug-in schedulers. As
the applications that are to be deployed on the grid vary greatly in terms of performance
demands, the DIET user is provided with the possibility of defining requirements for the
scheduling of tasks by configuring the appropriate scheduler.

Application developers may also define performance values to be included in a SED
response to a client request. For example, a DIET SED that provides a service to query
particular databases may need to include information about which databases are currently
resident in its disk cache so that data transfer times can be minimized. Application devel-
opers can define their own performance estimation routine or function when developing the
application-specific portion of the SED. At this point, any services added to the SED will
be associated with the performance estimation routine declared.

Application developers can define their own performance estimation routine or function
when developing the application-specific portion of the SED. At this point, any services
added to the SED will be associated with the performance estimation routine declared.

For scheduling step, DIET needs reliable resource information from grid resource in-
formation services. The performance estimation values required for plug-in schedulers are
stored in a performance estimation vector. Information are provided by the SEDs as a re-
sponse to a client call propagated from the master agent to local agents and finally to the

High Performance GridRPC Middleware 151

server level. The SEDs use CoRI (Collector of Resource Information) to fill this vector.
CoRI is designed to add any new monitoring tool interface or even any new prediction

tool within DIET. It could be dangerous to rely on a single prediction tool for all resource
information needs. For example, the prediction tool may not be available on a given archi-
tecture and the software dependencies may fail or be too difficult to satisfy in a particular
environment. In this case, the scheduler does not receive enough information. This tool
must always provide an answer in order to avoid the failure of the whole grid system. If the
tool is not able to provide a measurement, a generic response must be provided. Finally, the
tool must provide one single interface for all kinds of resource information services. If the
environment does not provide a prediction tool we propose a feature which provides a basic
set of performance measurements that can satisfy basic scheduler needs. Then the service
developer can rely on this collector of resource information (called CoRI-Easy) even if no
other resource services like NWS, Ganglia, etc., are available. Moreover, the tool must
manage the use of different collectors at the same time and in a similar way. The CoRI
Manager was designed for this management for the second problem, namely management
of different collectors.

To conclude this section, Figure 4 shows an experiment using two types of scheduler.
The first scheduler uses a simple round robin algorithm wherein we have six servers and
round robin works on a rotating basis so that one server is assigned some work, then moves
to the back of the list. The second scheduler is a CPU scheduler that maximizes the ratio
of BOGOMIPS

1+load_average
. This experiment is intended to be a proof of the utility of CoRI and the

plug-in schedulers with respect to the round robin scheduling scheme existing before their
development, as well as a proof of concept in general for the facility of tunable scheduling
schemes offered by DIET.

The behavior of both schedulers was studied for requests with different inter-arrival
times on a heterogeneous cluster. In this paper we focus on 1 minute for the request inter-
arrival time in order to see how the CPU scheduler performs when sufficient time is provided
for an accurate estimation of the load average. The distribution of the tasks for the CPU
scheduler was performed only on the four fastest nodes resulting in quasi-equal small times
for all the tasks. In the case of the Round Robin scheduler, some tasks were privileged by
being assigned to the fastest servers while others required longer computing times because
all servers were used and some were slower. The total computation time on the platform
is smaller with the CPU scheduler due to the fact that faster servers are more utilized. The
overlap of tasks observed in the case of the Round Robin scheduler on the slowest processor
resulted in larger computing times.

3.2.2 DIET Batch Scheduler Management

Parallel grid resources (parallel machines or clusters of workstations) are generally man-
aged by a reservation batch system such as Loadleveler1, PBS2, or OAR3. Such a system
is responsible for managing the submitted jobs and locating and allocating the required
resources. It accepts user submission scripts which must normally contain a variety of in-

1http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
2http://www.clusterresources.com/pages/products/torque-resource-manager.php
3http://oar.imag.fr/

152 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

(a) Round Robin Scheduler

(b) CPU Scheduler

Figure 4: Comparison between the taskflows for 25 consecutive requests with task inter-
arrival time equal to 1 minute.

formation including the requested number of resources and the amount of time needed for
the reservation (walltime).

An efficient grid middleware should provide transparent access to parallel resources for
the user. It must choose the best parallel resource that suits the request, eventually provide
for the parallel malleable task the right number of processors, provide the corresponding
walltime, and submit this information to the batch system in an automatically built script
in the language of the reservation system. Indeed, as the user does not need to know where
his/her job is executed (so the computation availability, etc.), such a script should be pro-
duced by the middleware in place of the user.

DIET has the possibility to submit jobs to batch systems including Loadlever and OAR
systems. The DIET parallel/batch API provides several functions on both client and server
side. On the client side, the client can explicitly ask for a sequential/parallel computation
of its job, but otherwise and whenever possible, DIET will choose the best available alloca-
tion among sequential/parallel resources. On the server side, the SED programmer builds
a script that is generic for all batch schedulers: the DIET server API provides generic envi-

High Performance GridRPC Middleware 153

ronment variables to perform the necessary abstraction to the site where the job is executed.

3.2.3 DIET Workflow Management

A large number of scientific applications are represented by graphs of tasks which are con-
nected based on their control and data dependencies. The workflow paradigm on grids is
well adapted for representing such applications and the development of several workflow
engines [2, 43, 54, 63] illustrate significant and growing interest in workflow management
within the grid community. The success of this paradigm in complex scientific applications
can be explained by the ability to describe such applications in high levels of abstraction
and in a way that makes it easy to understand, change, and execute them.

Several techniques have been established in the grid community for defining workflows.
The most commonly used model is the graph and especially the directed acyclic graph
(DAG). Since there is no standard language to describe scientific workflows, the description
language is environment dependent and usually XML based, though some environments
use scripts. In order to support workflow applications in the DIET environment, we have
developed and integrated a workflow engine. Our approach has a simple and a high level
API, the ability to use different advanced scheduling algorithms, and it should allow the
management of multi-workflows sent concurrently to the DIET platform.

DIET users, following the GridRPC paradigm, usually submit individual tasks. Work-
flows can of course be decomposed in individual tasks but the knowledge of the overall
structure of the graphs helps the scheduler to make wise mapping decisions. Thus we ex-
tended the agent hierarchy by adding a new special agent to handle workflow submissions.
This special agent, called a MADAG, manages the different workflow submissions. An
overview of the extended DIET architecture is shown in Figure 5.

LA
LA

LA

MA

SeD
SeD

SeD

SeD
SeD

SeD

Client

Workflow

Manager LA
LA

LA

MA

SeD
SeD

SeD

SeD
SeD

SeD
Client

Workflow
execution

Client

Workflow
execution

MA DAG

Ordering
+

Mapping

Ordering

Figure 5: Software architecture of DIET workflow engine.

The two architectures presented in the previous figure can be used within the same DIET

platform. The use of the MADAG is based on the user choice to use his own scheduling
strategy or to use the global one provided by the MADAG. It is obvious that when the user
decides not to use the MADAG, there is no collaboration between the different clients but he
can use and test easily a new scheduling algorithm by plugging it in the client code. On the
other hand, when the MADAG is used, the workflow submissions go through this special

154 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

agent and the multi-workflow can be handled more efficiently using core heuristics. To
avoid overloading due to multiple workflow submissions from different clients, the MADAG

is not responsible for workflow execution but it only manages the scheduling phase. Two
working modes can be used in the MADAG: in the first mode, a complete schedule (which
assigns priority and mapping for each task) is provided to the client, while in the second
only task priorities are returned to the client.

3.3 Future Directions

In our future work we plan to improve the flexibility of the plug-in schedulers, improve the
performance evaluation feature, port new applications, and finally test several DIET plat-
forms at a large scale within the Grid’5000 project [13]. The transparent submission to more
batch schedulers will also be supported, with the help of the work that has been performed
within the Open Grid Forum DRMAA working group. In this context co-scheduling algo-
rithms should be designed. Eventually, we could design a Service Oriented Architecture
(SOA) based on DIET and benefiting from plug-in scheduler.

Concerning the data management we developed a new tool called DAGDA (Data Ar-
rangement for Grid and Distributed Application) to support the GridRPC data management
API. DAGDA is a new data manager for DIET which allows data explicit or implicit repli-
cations and advanced data management on the grid.

4 GridSolve

The purpose of GridSolve is to create the middleware necessary to provide a seamless
bridge between the simple, standard programming interfaces and desktop systems that dom-
inate the work of computational scientists and the rich supply of services supported by the
emerging grid architecture. The goal is that the users of desktop systems can easily access
and reap the benefits (in terms of shared processing, storage, software, data resources, etc.)
of using grids. Having a broad community of scientists, engineers, research professionals
and students working with the powerful and flexible tool set provided by their familiar desk-
top computing environment, and yet able to easily draw on the vast, shared resources of the
grid for unique or exceptional resource needs, or to collaborate intensively with colleagues
in other organizations and locations, is the vision that GridSolve is designed to realize.

4.1 How GridSolve Works

GridSolve is a client-agent-server (or brokered RPC) system which provides remote access
to hardware and software resources through a variety of client interfaces.

The system consists of three entities, as illustrated in Figure 6.

• The Client, which needs to execute some remote procedure call. In addition to C
and Fortran programs, the GridSolve client may be an interactive problem solving
environment such as Matlab, Octave, or IDL (Interactive Data Language).

• The Server executes functions on behalf of the clients. The server hardware can range
in complexity from a uniprocessor to a MPP system and the functions executed by

High Performance GridRPC Middleware 155

Figure 6: Overview of GridSolve.

the server can be arbitrarily complex. Server administrators can straightforwardly
add their own function services without affecting the rest of the GridSolve system.

• The Agent is the focal point of the GridSolve system. It maintains a list of all available
servers and performs resource selection for client requests as well as ensuring load
balancing of the servers.

In practice, from the user’s perspective the mechanisms employed by GridSolve make
the remote procedure call fairly transparent. However, behind the scenes, a typical call to
GridSolve involves several steps, as follows:

1. The client queries the agent for an appropriate server that can execute the desired
function.

2. The agent returns a list of available servers, ranked in order of suitability.

3. The client attempts to contact a server from the list, starting with the first and moving
down through the list. The client then sends the input data to the server.

4. Finally the server executes the function on behalf of the client and returns the results.

156 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

In addition to providing the middleware necessary to perform the brokered remote pro-
cedure call, GridSolve aims to provide mechanisms to interface with other existing grid
services. This can be done by having a client that knows how to communicate with various
grid services or by having servers that act as proxies to those grid services. GridSolve pro-
vides some support for the proxy server approach, while the client-side approach would be
supported by the emerging GridRPC standard API [39].

4.2 Integrating User Services

We have implemented a simple technique for adding arbitrary services to a running server.
First, the new service should be built as a library or object file. Then the user writes a speci-
fication of the service parameters in a gsIDL (GridSolve Interface Definition Language) file.
The GridSolve problem compiler processes the gsIDL and generates a wrapper which is au-
tomatically compiled and linked with the service library or object files. Thus the services
are compiled as external executables with interfaces to the server described in a standard
format. The server re-examines its own configuration and installed services periodically
to detect new services. In this way it becomes aware of the additional services without
re-compilation or restarting of the server itself.

Normally the GridSolve server executes the actual service request itself, but in some
cases it can act as a proxy to other services such as Condor. The primary benefit is that the
client-to-server communication protocol is identical so the client does not need to be aware
of every possible back-end service. A server proxy also allows aggregation and scheduling
of resources, such as the machines in a cluster, on one GridSolve server.

4.3 Scheduling

The selection of the best server for a particular job is carried out at several layers. When a
new service is added, the author should provide a rough characterization of the performance
in terms of the arguments to the function. For example, sorting an N element array may
be characterized with COMPLEXITY="N * log(N)" in the service configuration file.
As the service is invoked, the server keeps track of the typical execution time for various
problem sizes and uses a least squares regression to compute coefficients for an expression
that more closely characterizes the expected performance. This is useful in cases where
different implementations of a service have the same theoretical execution time, but very
different real-world performance (e.g., vendor-tuned BLAS compared with the reference
BLAS). Both the theoretical and observed information are sent to the GridSolve agent,
which uses them to determine the ranking of the servers. After the ranked list is returned
to the client, it may choose to refine the list based on communication performance. For
instance, a very fast server may not be the best choice if it is only reachable through a slow
connection. Thus, the client can run a quick series of communication tests to estimate the
time that it would take to send and receive the data from each of the servers. The server list
is then re-sorted based on this information.

High Performance GridRPC Middleware 157

4.4 Network Address Translators

As the rapid growth of the Internet began depleting the supply of IP addresses, it became
evident that some immediate action would be required to avoid complete IP address de-
pletion. The IP Network Address Translator [22] is a short-term solution to this problem.
Network Address Translation presents the same external IP address for all machines within
a private subnet, allowing reuse of the same IP addresses on different subnets, thus reducing
the overall need for unique IP addresses.

4.4.1 Complications in the Presence of NATs

As beneficial as NATs may be in alleviating the demand for IP addresses, they pose many
significant problems to developers of distributed applications such as GridSolve [37]. Some
of the problems as they pertain to GridSolve are: IP addresses may not be unique, IP
address-to-host bindings may not be stable, hosts behind the NAT may not be contactable
from outside, and NATs may increase connection failures.

• IP addresses are not unique – In the presence of a NAT, a given IP address may not be
globally unique. Typically the addresses used behind the NAT are from one of several
blocks of IP addresses reserved for use in private networks, though this is not strictly
required. Consequently any system that assumes that an IP address can serve as the
unique identifier for a component will encounter problems when used in conjunction
with a NAT.

• IP address-to-host bindings may not be stable – This has similar consequences to the
first issue in that GridSolve can no longer assume that a given IP address corresponds
uniquely to a certain component. This is because, among other reasons, the NAT may
change the mappings.

• Hosts behind the NAT may not be contactable from outside – This currently pre-
vents all GridSolve components from existing behind a NAT because they must all
be capable of accepting incoming connections.

• NATs may increase connection failures – Connections through NATs may sometimes
be dropped spontaneously, depending on the particular NAT implementation (espe-
cially after a period of inactivity). This implies that GridSolve needs more sophisti-
cated fault tolerance mechanisms to cope with the increased frequency of failures in
a NAT environment.

To address these issues we have developed a new communications framework for Grid-
Solve. To avoid problems related to potential duplication of IP addresses, the GridSolve
components will be identified by a globally unique identifier specified by the user or gener-
ated randomly. The mapping between the component identifier and a real host will not be
maintained by the GridSolve components themselves, rather there will be a discovery proto-
col to locate the actual machine running the GridSolve component with the given identifier.
In a sense, the component identifier is a network address that is layered on top of the real
network address such that a component identifier is sufficient to uniquely identify and locate

158 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

any GridSolve component, even if the real network addresses are not unique. This is some-
what similar to a machine having an IP address layered on top of its MAC address in that
the protocol to obtain the MAC address corresponding to a given IP address is abstracted
in a lower layer. Since NATs may introduce more frequent connection failures, we have
implemented a mechanism that allows a client to submit a problem, break the connection,
and reconnect later at a more convenient time to retrieve the results. We may also want to
enhance the protocol to allow restarting partial transfers.

An important aspect to making this new communications model work is the proxy,
which is a component that allows servers to exist behind a NAT. Since a server cannot accept
unsolicited connections from outside the private network, it must first register with a proxy.
The proxy acts on behalf of the component behind the NAT by establishing connections
with other components or by accepting incoming connections. The component behind the
NAT keeps the connection with the proxy open as long as possible since it can only be
contacted by other components while it has a control connection established with the proxy.
To maintain good performance, the proxy only examines the header of the connections that
it forwards and it uses a simple table-based lookup to determine where to forward each
connection. Furthermore, to prevent the proxy from being abused, authentication may be
required.

4.4.2 GridSolve Proxy API

The programming interface that applications use to communicate through the proxy is based
on the BSD sockets API. To make it easy for developers to modify their code to be NAT-
tolerant, our API mirrors the sockets API as closely as possible.

The following functions map directly to the BSD sockets API and have the same pur-
pose. The primary difference is in the use of the PROXY_COMPONENTADDR instead of
struct sockaddr because addressing is done at the Component ID level.

proxy_socket(int domain, int type, int protocol)
proxy_bind(int s, const struct sockaddr *name, int namelen)
proxy_listen(int s, int backlog)
proxy_accept(int s, struct sockaddr *addr,
socklen_t *addrlen)

proxy_connect(int s, PROXY_COMPONENTADDR* name)
proxy_close(int fildes)

The new communications API has some additional functions to initialize the system,
get the component’s address, and get the proxy IP address and port.

proxy_init(char* configFile)
proxy_get_local_addr()
proxy_get_proxy_ip()
proxy_get_proxy_port()

High Performance GridRPC Middleware 159

Applications

Public GridRPC
 API

NetSolve Compatibility
 API

GridSolve Comm Library

GridSolve Proxy Library

Standard Sockets

GridRPC Support

Figure 7: GridSolve GridRPC Implementation.

4.5 GridRPC Implementation

The GridRPC API specification dictates how the API itself must look, but that leaves a lot
of flexibility in terms of the underlying implementation, especially in areas such as data
transfer protocols, scheduling, and resource discovery.

The GridSolve implementation is composed of several layers, as illustrated in Figure 7.
At the lowest layer is the standard sockets API, on top of which we have implemented our
proxy library. The proxy library handles creation and manipulation of the global ID as well
as interaction with the proxy server if necessary for NAT traversal. Above the proxy layer
is a high-level communications library that handles connection establishment, protocols for
transferring the RPC data, and data conversions such as byte order swapping and matrix
transposition. Above that is a set of routines providing support for both the GridRPC public
API and an optional layer for API compatibility with programs written using GridSolve.
The support layer also contains some non-standard features that we are experimenting with,
such as task farming and fault tolerance.

4.5.1 Delayed Function Handle Binding

The GridRPC function handle represents a mapping from a service descriptor (in this case a
simple character string) to the remote server that will be used to execute the function. This
mapping could be specified by the user or determined by the middleware using simple re-
source discovery mechanisms or possibly some more sophisticated scheduling algorithms.

The normal GridRPC calling sequence is to first initialize the handle using
grpc_function_handle_default() followed by a call to grpc_call() (or one
of its brethren) at some point later. In the case of the GridSolve implementation, there is a
slight problem with performing the scheduling in this scenario. GridSolve relies on having
access to the values of the arguments at the time the scheduling is performed so it can esti-
mate the execution time and communication cost of sending the data. However, at the time
grpc_function_handle_default() is called, we do not know which values will
be used in the eventual call, so scheduling is not possible.

To deal with this issue, we allow the user to specify a special host name when initializing

160 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

the function handle. The special name signifies that the function handle binding should be
delayed until the first time the handle is used to make a call. Subsequent calls will not cause
any change in the mapping.

4.5.2 GridRPC in Interactive Environments

The various GridRPC call functions rely on a variable argument list calling sequence. While
this is fine for languages like C and Fortran, it can be cumbersome when trying to link
the GridRPC client with interactive environments like Matlab. An earlier version of the
GridRPC specification had alternate GridRPC call functions based on an argument stack
that could be constructed at run-time by pushing the arguments one-by-one onto the stack.
The GridSolve implementation still retains these stack-based calls to ease the integration
with SCEs.

4.5.3 Fault Tolerance

GridSolve was implemented with GridRPC as its primary client API, but since it was an
evolution of the NetSolve project, we wanted to be able to implement a NetSolve com-
patibility API for supporting code written to the previous API. The NetSolve API is fairly
similar, but one major difference in the call semantics is that a failed call will be automati-
cally resent to a different server. The whole process is transparent to the user.

Thus, to support building a NetSolve API on top of our GridRPC implementation, we
added fault tolerant versions of the call, probe, and wait routines. Calling probe or wait on
a failed call will result in the call being performed again. These new routines are named
similarly, but with the addition of the “_ft” suffix.

4.5.4 Task Farming

Another feature from the NetSolve API that we wanted to preserve for compatibility and
future experimentation is task farming. Task farming represents an important class of dis-
tributed computing applications, where multiple independent tasks are executed to solve a
particular problem. Many algorithms fit into this framework, for example, parameter-space
searches, Monte-Carlo simulations and genome sequence matching.

Without using a special task farming API, a naive algorithm could be implemented by
using the standard GridRPC interface and letting the GridSolve agent handle the scheduling.
A user would make a series of non-blocking requests, probe to see if the requests have
completed, and then wait to retrieve the results from completed requests. However this
leads to problems with regard to scheduling, especially if the number of tasks is much
larger than the number of servers. Alternatively, the user could try to handle the details of
scheduling, but this solution requires a knowledge of the system that is not easily available
to the user, and it ignores the GridSolve goal of ease-of-use.

4.5.5 Request Serialization

Normally the results of a GridRPC call must be retrieved from the same process that ini-
tiated the call, but there are several reasons a user may want to pick up the results from a

High Performance GridRPC Middleware 161

different process:

• For very long running jobs, the user may not want to tie up resources by keeping
the client application running until completion. The application can be closed an
restarted later to retrieve the results.

• In some cases, the user may want to initiate the job, but have the results retrieved
later by a different person (or perhaps by himself, but from a different machine).

• For machines that go down regularly for various reasons (reservations, maintenance,
or just plain unreliability), saving the request can provide some degree of insurance
against losing results.

• As mentioned in Section 4.4, NATs can affect the stability of connections, especially
very long-lived connections with no traffic, as would be likely the scenario of wait-
ing for a long job. However, this can be rectified to a certain degree by using the
asynchronous GridRPC calls, which would not normally keep an open connection.

To deal with these various scenarios, we have added request serialization and deserial-
ization functions to our implementation. The serialization process stores into a character
string all the information necessary to retrieve the results later. This string can be saved
to disk and loaded into a separate process or sent to another user to be loaded into their
application.

5 GridRPC System Ninf-G

5.1 Brief History of Ninf-G

Ninf-G [41, 42, 60] is a GridRPC system developed in AIST (National Institute for Ad-
vanced Industrial Science and Technology), Japan. The project started back in 1994 and the
first generation implementation, called Ninf-1 [40, 52, 58] was released in 1996. Ninf-1 did
not provide sufficient security capabilities such as authentication or private communication.

The second generation implementation, called Ninf-G, was released in 2001, which
was based on Globus Toolkit 2 [47]. Thanks to Globus Toolkit, it enjoyed PKI based au-
thentication and authorization along with private communication. As the Globus Toolkit
moved on to Web Service based version 4, Ninf-G kept up with it; the ver. 4 was released
Feb. 2006, and can work with several grid middleware other than Globus toolkit.

5.2 The Design of Ninf-G

Ninf-G is designed the followings in mind.

• Simplicity.
Ninf-G is designed to be a thin layer that just does RPC. For example, it does not
provide any scheduling capability by itself. Instead, it is designed so that it is easy
to implement scheduling module on it. This is because scheduling strategies deeply
depend on the applications and no single scheduling mechanism full-fill requirements
of the application.

162 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

• Leverage existing middleware.
To avoid duplicated effort, we decided not to implement our own proprietary proto-
cols. Instead, we leverage existing grid middleware, such as Globus Toolkit, as much
as possible. This policy allows users to utilize de-fact standard grid infrastructure,
such as GridFTP servers, as part of their application written in Ninf-G.

5.2.1 Language Bindings

For the client side, Ninf-G provides client libraries written in C, which can be used also from
C++ and Fortran through wrapping functions, and Java. For the server side remote library,
Ninf-G supports C, C++, and Fortran. Ninf-G also supports server side MPI, meaning that
numerical libraries written using MPI, such as ScaLAPACK, can be called via network
using Ninf-G.

5.3 Basic Architecture of Ninf-G

A grid application constructed with Ninf-G is composed of a client program, written with
the GridRPC API, and server side remote library executable modules. Ninf-G expects fol-
lowing three services for the underlying grid middleware.

• Authenticated invocation of remote library module

• Secure communication between the client programs and the remote library modules

• Information management for remote library interface information and remote library
invocation

For authenticated invocation, Ninf-G is able to use several grid middleware, as de-
scribed in detail in Section 5.6. For secure communication, Ninf-G uses Globus-IO, which
is provided as a part of Globus Toolkit and enables authenticated and private communica-
tion. As information services, Ninf-G supports Globus MDS2 and MDS4, while also allows
users to just use files on the local site as a information source.

The diagram shown in Figure 8 describes the overview of the Ninf-G system.

5.4 How to “Gridify” Libraries

In order to “gridify” a library, the Ninf library provider describes the interface of the library
function using the Ninf IDL to publish his library function, which are only manifested and
handled at the server side. The Ninf IDL supports datatypes mainly tailored for serving
numerical applications: for example, the basic datatypes are largely scalars and their multi-
dimensional arrays. On the other hand, there are special provisions such as support for
expressions involving input arguments to compute array sizes, designation of temporary
array arguments that need to be allocated on the server side but not transferred, etc.

This allows direct “gridifying’ of existing libraries that assumes array arguments to
be passed by call-by-reference (thus requiring shared-memory support across nodes via
software), and supplementing the information lacking in the C and Fortran typesystems
regarding array sizes, array stride usage, array sections, etc.

High Performance GridRPC Middleware 163

ServerC l i en t

C l i en t

Job Exec.
S er v i ce

3. Invoke
Executable

4. Connect
back

Numerical
L ib rary

I D L C om p i l er

Remote Library
Executable

Generate

1. Interface
Request

2. Interface
Reply

fork

Information
S e rv ic e

Interface
Info rm ati o n

F i l ere t ri e v e

IDL
FILE

Figure 8: Ninf-G overview.

Module sample;
Define mmul(IN int N,

IN double A[N*N],
IN double B[N*N],
OUT double C[N*N])

Required "mmul_lib.o"
Calls "C" mmul(N, A, B, C);

Figure 9: An example of Ninf IDL file.

As an example, interface description for the matrix multiply is shown in Figure 9, where
the access specifiers IN and OUT specify whether the argument is read or written within
the gridified library. Other IN arguments can specify array sizes, strides, etc., with size
expressions. In this example, the value of N is referenced to calculate the size of the array
arguments A, B, C. In addition to the interface definition of the library function, the IDL
description contains the information needed to compile and link the necessary libraries.
Ninf-G tools allow the IDL files to be compiled into stub main routines and makefiles,
which automates compilation, linkage and registration of gridified executables.

5.5 Advanced Features of Ninf-G

Although the primal API of Ninf-G is the GridRPC standard API, Ninf-G also supports
non-standard API functions to support advanced features.

5.5.1 Server Side Persistent State

One of the outstanding features is “object handle” that enables to keep persistent state on
the server side. This is quite effective to reduce communication between client and server.

Assume that you have a parameter survey-type application, that requires certain amount
of data except for the parameter itself for calculation. If we just use the basic GridRPC
mechanism, we have to transfer the data again and again along with the parameter. With the

164 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

Module matmul_object;

DefClass matmul
Required "matmul.o"
{

DefMethod setArray(IN int N, IN double A[N][N])
"set persistent array"
{
extern void setArray(int, double *);
setArray(N, A);
}

DefMethod multiply(IN int N, IN double B[N][N], OUT double C[N][N])
{
extern void multiply(int, double *, double *);
multiply(N, B, C);
}

}

Figure 10: An example of Ninf Object IDL.

/* create object handle */
grpc_object_handle_init_np(&handle,

"server.example.org",
"matmul_object/matmul");

/* set the left operand */
grpc_invoke_np(&handle, "setArray", N, A);

/* multiply several times reusing the left operand */
for (i = 0; i < M; i++) {

grpc_invoke_np(&handle, "multiply", N, &B[i], &C[i]);
}

Figure 11: Client code fragment that uses object handle.

persistent state capability, we can stage the data in advance only once, and reuse them for
successive calculations without transfer them. This will drastically reduce the data transfer
amount and raise the total performance of the application.

Let us see the IDL example that defines “remote object”. In the example shown in
Figure 10, we defined a object that multiplies matrices. We assume that the user wants to
keep the left hand side matrix same for all the computation, therefore make the left matrix
persistent. This object defines two methods, one is the setArray that is to transfer the
left hand matrix in advance, and the other is the multiply that does the computation.

To utilize the remote object, the client has to use a new type called
grpc_object_handle_t and a series of functions begins with grpc_invoke. A
program fragment is shown in Figure 11.

5.5.2 Callback Function

Another outstanding capability is the callback function. The callback function is the ca-
pability to call functions on the client from the server side remote library modules. This
capability allows users to visualize intermediate result on the client display and to steer
computation based on the intermediate result. Another possible application of this capabil-
ity is branch and bound methods where this capability is useful to broadcast intermediate
result as soon as possible while keeping the grain size of the computation.

High Performance GridRPC Middleware 165

/* global */
int executableStatus;
int clientStatus;

void callback_func(int c[], int d[])
{

executableStatus = c[0];
d[0] = clientStatus;

}

main()
{

grpc_function_handle_t handle;
grpc_error_t result;
int b;
...
result = grpc_function_handle_init(&handle,

"server.example.org", "test/callback_test");
result = grpc_call(&handle, 100, &b, callback_func);
...

}

Figure 12: Client code that uses a callback function.

Module test;

Define callback_test(IN int a, OUT int *b,
callback_func(IN int c[1], OUT int d[1]))

{
int executableStatus, clientStatus;
executableStatus = calc(a, b);
callback_func(executableStatus, &clientStatus);
if (d == 1) {

/* client is alive */
}

}

Figure 13: Example of server-side IDL with a callback function.

A client program example is shown in Figure 12. The program defines a function
(callback_func) and passes the pointer to the GridRPC API function. The correspond-
ing remote library IDL is shown in Figure 13. Ninf-G IDL compiler generates stub func-
tions for each callback function and passes pointers for them to remote library codes. The
remote libraries can just use them as if they are ordinary function pointers.

5.5.3 Bulk Function Handle Initialization

Parameter survey type applications often requires to initialize a lot of, from tens to hun-
dreds, function handles on a site. With serialized initialization, it takes substantial time
just to initialize handles, due to the large network latency in the grid environment and slow
response of the grid middleware. Fortunately, most back-end queueing systems and grid
middleware support bulk job submission capability. Ninf-G provides an API function to
leverage such capability to avoid the serialized initialization. Figure 15 shows code frag-
ments for serialized and bulk handle initialization.

5.5.4 Error Detection with Timeout

In the grid environment, error detection is much more difficult than with an environment in a
single site. Even with TCP connection, we cannot expect a program to detect a network fail-
ure immediately, making timeout based error-detection quiet important. Ninf-G provides

166 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

void func(int * a){
…
}

main() {
….
grpc_call(…, func);
….

}

void library(…,
void f0(int * a))

{
…
f0(…);
…

}

Client Program Remote Library
Executable

Figure 14: Callback function.

// serialized initialization
for (i = 0; i < n; i++)

grpc_function_handle_init(&handles[i], host, func_name);

// bulk initialization
grpc_function_handle_array_init_np(handles, n, host, func_name);

Figure 15: Bulk function handle initialization.

three kinds of timeout mechanisms: invocation timeout, execution timeout, and heartbeat
timeout. The first mechanism detects timeout for server process invocation. If a remote
program is not activated within a time specified by the user, Ninf-G returns an error to the
client program. Execution timeout detects an excessive execution time. The last mecha-
nism is used to detect the degradation of network performance. When the heartbeat timeout
is set, the library embedded in the remote library executable sends keep-alive messages to
the client periodically. If the client does not receive the message over a specified period,
Ninf-G returns an error. All timeout mechanisms can be used by setting attributes such as
job_maxwallTime in the configuration file. We set these attributes and implement er-
ror check routines for all the Ninf-G functions in the scheduling code. This capability was
proved to be essential in the wide area experiment described in the section 6.5.

5.6 Multiple Invocation Method

Recently, there are several grids in production. Unfortunately, the middleware used there
are not standardized yet, despite the tremendous effort in the Open Grid Forum. To utilize
grids out there, job invocation methods for each grid middleware are required. Ninf-G sup-
ports several grid middleware, including Globus GRAM2 [17], GRAM4 [26], Unicore [49],
Condor [16], NAREGi middleware [36], and SSH, to give users the chance to utilize grids
as much as possible. A Ninf-G client program can utilize all of them simultaneously.

The module actually manages job invocation, which is called invoke server and runs as
a separate process. This is not only to avoid the possible problems on linkage with libraries
provided by several grid middleware, but also to allow to use most proper languages for the
target grid middleware.

The diagram shown in Figure 16 denotes the module configuration within the invoke

High Performance GridRPC Middleware 167

Client
Program Job Exec. Service

Remote
Library Executable

Job Exec.
Request

Job Execution

Communication

ClientClient ServerServer

Invoke
Server

Text based
simple protocol

Figure 16: Invoke Server concept.

Table 1: List of Invoke Servers

Target Invoke Method Implementation Language
Globus GRAM2 C
Globus GRAM4 python
Unicore Java
NAREGI Middleware Java
Condor Java
SSH C

server. The invoke server and the client program communicate with each other using a text-
based simple protocol, which is inspired by the GAHP [48] protocol used for remote job
control in Condor-G [66].

The protocol uses two streams: one is for synchronous communication and the other
is for asynchronous notification from the invoke server. The former is mapped on to the
standard in/out of the invoke server, while the latter is on the standard error. Note that the
invoke server does not have to open socket connection to the client, making the implemen-
tation simple and easy. The protocol is simple enough and well-documented to make it easy
to implement new invoke server for given grid middleware.

In Table 1, we show the list of the invoke servers and language used to implement the
module. The invoke server for Globus GRAM4 is implemented as a Python script that uses
commands written in C behind the seen for job invocation and management. The invoke
server for Condor, implemented in Java, also uses C written command-line commands. The
invoke server for SSH is provided to make it easy to try the Ninf-G capability without fully
deproying the Globus Toolkit. It uses SSH to communicate with the remote server. Adding
to the default “fork” method for invocation, it also supports to submit jobs using server side
job queueing systems, including Sun Grid Engine [57] and Condor [16].

168 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

Client Remote Library
Executable

Overlay Network

Firewall

Figure 17: Ninf-G 5 design concept.

5.7 Future Direction

Network asymmetry is always the problem with distributed grid applications. Ninf-G ver-
sion 4 assumes that the remote library can directly connect back to the client, which means
that the remote library executable can be inside a NAT enabled private network, while the
client cannot. To cope with this problem there are lot of efforts, generally called overlay
networks, which enables symmetric communication on the asymmetric physical environ-
ment. The natural way for us is to modify the Ninf-G so that it can leverage such efforts for
communication between client and remote library executable. The next generation, called
Ninf-G ver. 5, which is scheduled to be released in 2008 Spring, will have generic interface
to communicate with the existing overlay networks, as shown in Figure 17, and our own
rather primitive overlay network implementation.

6 Applications

6.1 Cosmological simulations

RAMSES 4 application is a typical computational intensive application used by astrophysi-
cists to study the formation of galaxies. RAMSES is used, among other things, to simulate
the evolution of a collisionless, self-gravitating fluid called “dark matter” through cosmic
time (see Figure 18). Individual trajectories of macro-particles are integrated using a state-
of-the-art “N body solver”, coupled to a finite volume Euler solver, based on the Adaptive
Mesh Refinement technics. The computational space is decomposed among the available
processors using a mesh partitionning strategy based on the Peano–Hilbert cell ordering
[64, 65].

Cosmological simulations are usually divided into two main categories. Large scale
periodic boxes (see Figure 18) requiring massively parallel computers are performed on
very long elapsed time (usually several months). The second category stands for much
faster small scale “zoom simulations”. One of the particularity of the HORIZON3 project
is that it allows the re-simulation of some areas of interest for astronomers.

For example in Figure 19, a supercluster of galaxies has been chosen to be re-simulated
at a higher resolution (highest number of particules) taking the initial information and the
boundary conditions from the larger box (of lower resolution). This is the latter category we

4http://www.projet-horizon.fr/

High Performance GridRPC Middleware 169

Figure 18: Time sequence (from left to right) of the projected density field in a cosmological
simulation (large scale periodic box).

are interested in. Performing a zoom simulation requires two steps: the first step consists
of using RAMSES on a low resolution set of initial conditions i.e., with a small number of
particles) to obtain at the end of the simulation a catalog of “dark matter halos”, seen in
Figure 18 as high-density peaks, containing each halo position, mass and velocity. A small
region is selected around each halo of the catalog, for which we can start the second step of
the “zoom” method. This idea is to resimulate this specific halo at a much better resolution.
For that, we add in the Lagrangian volume of the chosen halo a lot more particles, in order
to obtain more accurate results. Similar “zoom simulations” are performed in parallel for
each entry of the halo catalog and represent the main resource consuming part of the project.

Figure 19: Re-simulation on a supercluster of galaxies to increase the resolution

RAMSES simulations are started from specific initial conditions, containing the initial
particle masses, positions and velocities. These initial conditions are read from Fortran
binary files, generated using a modified version of the GRAFIC5 code. This application
generates Gaussian random fields at different resolution levels, consistent with current ob-
servational data obtained by the WMAP6 satellite observing the cosmic microwave back-
ground radiation. Two types of initial conditions can be generated with GRAFIC:

5http://web.mit.edu/edbert
6http://map.gsfc.nasa.gov

170 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

• single level: this is the “standard” way of generating initial conditions. The resulting
files are used to perform the first, low-resolution simulation, from which the halo
catalog is extracted.

• multiple levels: this initial conditions are used for the “zoom simulation”. The re-
sulting files consist of multiple, nested boxes of smaller and smaller dimensions, as
for Russian dolls. The smallest box is centered around the halo region, for which we
have locally a very high accuracy thanks to a much larger number of particles.

The result of the simulation is a set of “snaphots”. Given a list of time steps (or expan-
sion factor), RAMSES outputs the current state of the universe (i.e., the different parameters
of each particules) in Fortran binary files.

These files need post-processing with GALICS modules: HaloMaker, TreeMaker and
GalaxyMaker. These three modules are meant to be used sequentially, each of them produc-
ing different kinds of information: HaloMaker detects dark matter halos present in RAM-
SES output files, and creates a catalog of halos. TreeMaker gives the catalog of halos,
TreeMaker builds a merger tree: it follows the position, the mass, the velocity of the differ-
ent particules present in the halos through cosmic time. GalaxyMaker Application applies
a semi-analytical model to the results of TreeMaker to form galaxies, and creates a catalog
of galaxies. Figure 20 shows the sequence of modules used to realise a whole simulation.

1

j+1

Retreiving simulation
parameters
Setting the MPI
environment

RAMSES3d (MPI code)

TreeMaker :
Post−processing
HaloMaker’s outputs GalaxyMaker :

Post−processing
Treemaker’s outputs

2
GRAFIC1: first run
No zoom, no offset

3
rollWhiteNoise : centering
according to the offsets
cx, cy and cz

4 GRAFIC1: second run
with offsets

If nb levels == 0

GRAFIC1...

GRAFIC2...

GRAFIC2...

GRAFIC2...

GRAFIC2

5’ 5" 5"’ 5n

6n

7n

8n

jn

8"’

7"’

6"’6"

7"

6’

HaloMaker
on 1
snapshot
per process

... n

Stopping the environment
Sending the
post−processing to
the client

j+2’ j+2" j+2’’’ j+2

j+3

j+4

j+5

Figure 20: Workflow of a simulation

An experiment has been realized to test the scalability of DIET. This experiment has
been realized on Grid’5000 [13], and the application was about cosmological computations.
For this experiment, the entire grid of Grid’5000 was reserved (i.e., among the uncrashed
nodes) which corresponded to 12 clusters that have been used on 7 sites for a duration time
of 48 hours. Finally 979 machines were used with an user-defined environment containing
all the needed modules for the experiment.

High Performance GridRPC Middleware 171

6.2 Environmental Modeling

A tremendous amount of planning goes into an undertaking as large as restoring the Ever-
glades. Studies must first be done to determine what areas need to be restored and how best
to do so without further damaging an already delicate ecosystem. To aid in this planning,
a group at the University of Tennessee led by Dr. Lou Gross has collaborated on the de-
velopment of a suite of environmental models called ATLSS (Across Tropic Level System
Simulation) [25]. These models provide comparisons of the effects of alternative future
hydrologic plans on various components of the biota.

This package has proven itself quite useful in the planning efforts, however it requires
extensive computational facilities that are typically not available to the many stakeholders
(including several federal and state agencies) involved in the evaluation of plans for restora-
tion that are estimated to cost $8 billion. To allow greater access and use of computational
models in the South Florida stakeholder community, a grid-enabled interface to the ATLSS

models has been developed and is currently being used on SInRG resources. This inter-
face provides for the distribution of model runs to heterogeneous grid nodes. The interface
utilizes GridSolve for model run management and the LoRs (Logistical Runtime System)
[9] toolkit and library for data and file movement. Integration of the grid interface with
a web based launcher and database provides a single interface for accessing, running, and
retrieving data from the variety of different models that make up ATLSS, as well as from a
variety of different planning scenarios.

ATLSS, in conjunction with GridSolve and LoRS, is the first package we are aware
of that provides transparent access for natural resource managers through a computational
grid to state-of-the-art models. The interface allows users to choose particular models and
parameterize them as the stakeholder deems appropriate, thus allowing them the flexibil-
ity to focus the models on particular species, conditions or spatial domains they wish to
emphasize. The results can then be viewed within a separate GIS tool developed for this
purpose.

6.3 Statistical Parametric Mapping

Statistical Parametric Mapping (SPM) is a widely used medical imaging software package.
The SPM web site [56] describes the technique as follows.

Statistical Parametric Mapping refers to the construction and assess-
ment of spatially extended statistical process used to test hypotheses about
[neuro]imaging data from SPECT/PET & fMRI. These ideas have been in-
stantiated in software that is called SPM.

Although SPM has achieved widespread usage, little work has been done to optimize the
package for better performance. In particular, little effort has gone into taking advantage of
the largely parallel nature of many parts of the SPM package.

Through continuing research by Dr. Jens Gregor and Dr. Michael Thomason at the
University of Tennessee, preliminary work has been done to enhance the SPM package to
utilize grid resources available through GridSolve and IBP by way of the GridSolve-to-
IBP library. GridSolve-to-IBP is a library built on top of LoRS and ROLFS (Read-Only
Logistical File System) that allows the sharing of files between the GridSolve client and

172 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

server processes, using IBP repositories as intermediate storage. This allows programs that
need access to a common set of files (e.g., SPM) to export some of their functionality to a
GridSolve server without having to use a shared filesystem, such as NFS.

The grid-enabled version of SPM is still under development, but executions of the pre-
liminary version have been timed to run in one half to one third the time of unmodified
code in some simulations. Once completed, the SPM software will be distributed across
the SInRG resources for use in medical research, providing doctors and researchers a faster
time to completion, something often critical in medical imaging analysis.

6.4 Vertex Cover and Clique Problems

A widely-known and studied problem in computer science and other disciplines is the Ver-
tex Cover problem, which asks the following question.

Given a graph G=(V,E) and an integer k, does G contain a set S with k or
fewer vertices that covers all of the edges in G, where an edge is said to be
covered if at least one of its endpoints are contained in S?

Vertex Cover is NP-complete in general, but solvable in polynomial time when k is fixed.
The applications for this problem are far-reaching, including applications in bioinformatics,
such as phylogeny, motif discovery, and DNA microarray analysis. The problem, however,
is inherently difficult and time-consuming to solve, so efficient software packages for solv-
ing Vertex Cover are very desirable.

Research conducted by Dr. Michael Langston of the University of Tennessee aims to
create an efficient software package for solving Vertex Cover. Dr. Langston and his student
researchers are interested mainly in the duality between the Vertex Cover problem and the
Clique problem. The Clique problem asks the following question.

Given a graph G=(V,E) and an integer k, does G contain a set S of k nodes
such that there is an edge between every two nodes in the clique?

By exploiting the duality between these two problems, they have been able to solve ex-
tremely large instances of Clique (graphs containing greater than 104 vertices). To achieve
reasonable times to solution, Dr. Langston’s team has developed a parallel version of their
software, which is being actively run on SInRG (Scalable Intracampus Research Grid) [55]
resources. The team has taken several approaches to making their application grid-aware,
ranging from developing a custom scheduler and starting jobs via Secure Shell (SSH) to
using popular grid middleware, such as Condor. The team has implemented a prototype
version of their software that uses GridSolve to efficiently access a large number of compu-
tational resources.

6.5 Hybrid Computation with GridRPC and MPI

Although MPI has long history as a de-fact standard for parallel HPC applications, it is
not suitable for writing grid application only with MPI, since it is not fault-tolerant and it
requires symmetric network connectivity which is not common on the real grid.

High Performance GridRPC Middleware 173

Figure 21: GridRPC and MPI hybrid approach used for multi-scale MD/QM simulation.

We proposed methods and strategies of the development and execution of grid-enabled
applications which realize large-scale and long-run executions on the e-Infrastructure
[61][59]. One of the key technical innovations is a programming method, which is a hybrid
grid remote procedure call (GridRPC) + message passing interface (MPI) grid application
framework to combine flexibility (adaptive resource allocation and migration), fault toler-
ance (automated fault recovery), and efficiency (scalable management of large computing
resources). We have developed grid-enabled multiscale simulations based on the proposed
programming model, and had large-scale empirical experiments as feasibility studies. As
an application for the method, we employed multiscale simulation, that uses both of QM
(Quantum Mechanics) and MD (Molecular Dynamics) for high-speed but precise simula-
tion. Figure 21 shows the mapping of the QM and MD on to GridRPC and MPI.

We performed experiments with 6 sites spans Japan and US, 1129 processors in total
(Table 2). Figure 22 shows the status of the execution. Blue bars indicate that the cluster
was used for QM simulations. Red bars indicate that the cluster was not available. Yellow
bars indicate that the cluster was available, however there was some limitations such as the
number of available nodes was reduced due to some problems. The simulation was started
using AIST P32 and F32 clusters. After 10 hours, TeraGrid clusters became available and
it was automatically detected by the scheduler, which has a time table of the available
clusters. The experimental results showed that the proposed programming paradigm is a
promising approach for realizing sustainable grid supercomputing for large-scale scientific
applications on the e-Infrastructure.

6.6 GridFMO - Quantum Chemistry of Proteins on the Grid

Another outstanding application of Ninf-G is the GridFMO. which is developed by recoin-
ing the Fragment Molecular Orbital (FMO) method of GAMESS with grid technology [31].

174 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

Table 2: Computing resources used for the simulations.

Cluster Site / Grid # CPUs to be used
F32 AIST 41
F32 AIST 32 x 6 (192)
P32 AIST 32 x 8 (256)
NCSA TeraGrid 32 x 8 (256)
SDSC TeraGrid 32 x 4 (128)
purdue TeraGrid 32 x 8 (256)
Total 1129

Figure 22: Simulation execution status.

With the GridFMO, quantum calculations of macro molecules become possible by using
large amount of computational resources collected from many moderate-sized cluster com-
puters.

We developed a new middleware suite on Ninf-G, whose fault tolerance and flexible
resource management were found to be indispensable for long-term calculations. The mid-
dleware is composed of three objects: Bookkeeper (BK), Doorkeeper (DK), and Machine
(M). The application works as a Client (C) to both BK and DK. The relationship among
them is depicted in Figure 23.

The GridFMO was used to draw ab initio potential energy curves of a protein motor sys-
tem with 16,664 atoms. For the calculations, 10 cluster computers over the Pacific rim were
used, sharing the resources with other users via batch queue systems on each machine. A
series of 14 GridFMO calculations were conducted for 70 days, coping with more than 100
problems cropping up. The FMO curves were compared against the molecular mechanics
(MM), and it was confirmed that (1) the FMO method is capable of drawing smooth curves

High Performance GridRPC Middleware 175

Doorkeeper C
Doorkeeper B

Machine α
Batch Queue

n
...

Node 0

Doorkeeper AClientBookkeeper

Table of
Resources

...

Doorkeeper A
 Machine α

 Machine β
Node0, Node1, ...

Node0, Node1, ...

Job Queue

Fragment 1
Fragment 2
Fragment 3

...

NinfG

(2) Provide resource

(1) Request resource

(3) Dispatch job

(4) Return results(5) Return resource

Figure 23: Structure of the middleware composed of Ninf-G.

despite several cut-off approximations, and that (2) the MM method is reliable enough for
molecular modeling.

7 Conclusion and Future Work

We have presented the GridRPC model and the corresponding GridRPC API, which is now
an Open Grid Forum standard. It is a simple, powerful, flexible, and effective means to
execute jobs over the grid. Indeed, using the API, one can easily write a client to submit a
request on any GridRPC compliant middleware, get tasks remotely launched and executed,
and obtain some results. Work can even use data parallelism, task parallelism or a mixed
model to achieve greater performance.

Numerous middleware are now GridRPC compliant. Here we have presented three of
them which are among the most used, and whose projects actively participate to the next
step of the work performed in the OGF Working Group concerning the GridRPC Data
Management API, namely DIET, GridSolve, and Ninf.

Each middleware has been designed and implemented to tackle some special problem-
atics. Hence, DIET extends the GridRPC model and relies on a hierarchy of agents where
communications are addressed with a CORBA layer. DIET focus on deployment (mapping
of DIET components for platform load-average) and scheduling issues, which is distributed
in the hierarchy and can be application specific; GridSolve relies on sockets and addresses
at the same time security issues with the encryption of communications and deployment
issues to be able to maintain communications for example behind NAT; Ninf has integrated
the use of Globus components to launch and manage jobs. It proposes for example some
authentication methods which are necessary to use some resources distributed in Japan. Ex-
amples of use of these middlewares have been described. They show a Physics application
with cosmological problems, medical issues, and chemistry application integrated as ser-
vices on a grid platform which can be accessed via a web page executing a small GridRPC
client.

The next steps evolution of GridRPC can be foreseen. First of all, as applications require
more and more amount of data, the main focus will be on the GridRPC Data Management.
Once the Data Management API is done, implementations with the use of different data will

176 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

lead to address the interoperability of the different implementations. From this point, there
are two main directions to be followed. First, the conception of a fully interoperable client
submitting to any middleware and using the Data Management API to address performance
in the problem resolution should answer to the OGF Working Group existence. Second,
the GridRPC API may be extended to converge with Web Services in the Service Oriented
Architecture paradigm.

Acknowledgements

We would like to thanks several people who have contributed to the success of the GridRPC
API and our middleware developments: Henri Casanova, Jack Dongarra, Craig Lee, Satoshi
Matsuoka, Andre Merzky, Jean-Marc Nicod, Laurent Philippe, and each person involved in
DIET, Ninf, and GridSolve development.

DIET was developed with financial support from the French Ministry of Research
(RNTL GASP and ACI ASP) and the ANR (Agence Nationale de la Recherche) through
the LEGOproject referenced ANR-05-CIGC-11 and the Gwendia project referenced ANR-
06-MDCA-009.

References

[1] Y. Aida, Y. Nakajima, M. Sato, T. Sakurai, D. Takahashi, and T. Boku. Performance
Improvement by Data Management Layer in a Grid RPC System. In Yeh-Ching Chung
and José E. Moreira, editors, GPC. Advances in Grid and Pervasive Computing, First
International Conference, GPC 2006, Taichung, Taiwan, May 3-5, 2006, Proceedings,
volume 3947 of Lecture Notes in Computer Science, pages 324–335. Springer, 2006.

[2] K. Amin, G. von Laszewski, M. Hategan, N.J. Zaluzec, S. Hampton, and A. Rossi.
GridAnt: A Client-Controllable Grid Workflow System. In HICSS, volume
07:70210c, 2004.

[3] G. Antoniu, L. Bougé, and M. Jan. JuxMem: An Adaptive Supportive Platform for
Data Sharing on the Grid. Scalable Computing: Practice and Experience, 6(3):45–55,
September 2005.

[4] D.C. Arnold, D. Bachmann, and J. Dongarra. Request Sequencing: Optimizing Com-
munication for the Grid. In EUROPAR: Parallel Processing, 6th International EURO-
PAR Conference. LNCS, 2000.

[5] D. Bachmann and A. Goller. An Image Processing Backend Based on Java and
CORBA. In Earth Observation & Geospatial Web and Internet Workshop, February
1999.

[6] C.K. Baru, R.W. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Bro-
ker. In Stephen A. MacKay and J. Howard Johnson, editors, CASCON. Proceedings
of the 1998 conference of the Centre for Advanced Studies on Collaborative Research,
page 5. IBM, December 1998.

High Performance GridRPC Middleware 177

[7] F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid
Components. In International Symposium on Distributed Objects and Applications
(DOA), volume 2888 of Lecture Notes in Computer Science, pages 1226–1242, Cata-
nia, Sicily, Italy, November 2003. Springer Verlag.

[8] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Dongarra, T. Moore,
G. Obertelli, J. Plank, and M. Swany. Middleware for the Use of Storage in Com-
munication. Parallel Computing, 28(12):1773–1787, December 2002.

[9] M. Beck, Y. Ding, S. Atchley, and J. S. Plank. Algorithms for High Performance,
Wide-area Distributed File Downloads. Parallel Processing Letters, 13(2):207–224,
June 2003.

[10] F. Berman, G.C. Fox, and A.J.H. Hey, editors. Grid Computing: Making the Global
Infrastructure a Reality. Wiley, 2003.

[11] G. Bosilca, G. Fedak, and F. Cappello. OVM: Out-of-order Execution Parallel Virtual
Machine. Future Generation Computer Systems, 18:525–537, 2002.

[12] M. Brzezniak and N. Meyer. Optimisation of the Usage of Mathematical Libraries in
the Grid Environment. In Proceedings of the Second Cracow Grid Workshop, pages
74–86, Cracow, Poland, 2002.

[13] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, and O. Richard. GRID’5000: A
Large Scale, Reconfigurable, Controlable and Monitorable Grid Platform. In SC’05:
Proc. The 6th IEEE/ACM International Workshop on Grid Computing Grid’2005,
pages pages 99–106, Seattle, USA, November 2005.

[14] F. Cappello, S. Djilalia, G. Fedak, T. Herault, F. Magniette, V. Néri, and O. Lodygen-
sky. Computing on large-scale distributed systems: XtremWeb architecture, program-
ming models, security, tests and convergence with grid. Future Generation Computer
Systems, 21(3):417–437, March 2005.

[15] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled
Servers on the Grid. In International Journal of High Performance Computing Appli-
cations, volume 20(3), pages 335–352, 2006.

[16] Condor. http://www.cs.wisc.edu/condor/.

[17] K. Czajkowski, I. Foster, C. Kesselman, N. Karonis, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacomputing Systems. In
Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Process-
ing, 1998.

[18] H. Dail and F. Desprez. Experiences with Hierarchical Request Flow Management
for Network-Enabled Server Environments. In International Journal of High Perfor-
mance Computing Applications, volume 20(1), pages 143–157, 2006.

178 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

[19] B. Del-Fabbro, D. Laiymani, J.-M. Nicod, and L. Philippe. A Data Persistency
Approach for the DIET Metacomputing Environment. In Hamid R. Arabnia, Olaf
Droegehorn, and S. Chatterjee, editors, International Conference on Internet Comput-
ing, pages 701–707, Las Vegas, USA, June 2004. CSREA Press.

[20] DIET: Distributed Interactive Engineering Toolbox. http://graal.ens-lyon.
fr/DIET.

[21] S. Djilali, T. Herault, O. Lodygensky, T. Morlier, G. Fedak, and F. Cappello. RPC-
V: Toward Fault-Tolerant RPC for Internet Connected Desktop Grids with Volatile
Nodes. In Proceedings of the ACM/IEEE Supercomputing’2004 Conference, Novem-
ber 2004.

[22] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631,
University of Utah, Department of Mathematics, May 1994.

[23] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H.L.
Truong, A. Villazon, and M. Wieczorek. ASKALON: A Grid Application Develop-
ment and Computing Environment. In GRID ’05: Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, pages 122–131, Washington, DC, USA,
2005. IEEE Computer Society.

[24] M.C. Ferris, M.P. Mesnier, and J.J. Moré. NEOS and Condor: Solving Optimization
Problems Over the Internet. ACM Transactions on Mathematical Software, 26(1):1–
18, March 2000.

[25] D.M. Fleming, D.L. DeAngelis, L.J. Gross, R.E. Ulanowicz, W.F. Wolff, W.F. Loftus,
and M.A. Huston. ATLSS: Across-Trophic-Level System Simulation for the Fresh-
water Wetlands of the Everglades and Big Cypress Swamp. Technical report, National
Biological Service Technical Report, 1994.

[26] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pages 2–13, 2005.

[27] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2004.

[28] M. Good and J.-P. Goux. iMW : A Web-based Problem Solving Environment for Grid
Computing Applications. Technical report, Department of Electrical and Computer
Engineering, Northwestern University, 2000.

[29] GrADS. http://www.hipersoft.rice.edu/grads/.

[30] T. Haupt, E. Akarsu, and G. Fox. WebFlow: A Framework for Web Based Metacom-
puting. Future Generation Computer Systems, 16(5):445–451, March 2000.

[31] T. Ikegami, J. Maki, T. Takami, Y. Tanakaa, M. Yokokawa, S. Sekiguchi, and M. Aoy-
agi. GridFMO - Quantum Chemistry of Proteins on the Grid. In Proc. of Grid 2007,
2007.

High Performance GridRPC Middleware 179

[32] N. Kapadia, J. Robertson, and J. Fortes. Interfaces Issues in Running Computer Ar-
chitecture Tools via the World Wide Web. In Workshop on Computer Architecture
Education at ISCA 1998, Barcelona, 1998. http://www.ecn.purdue.edu/
labs/punch/.

[33] R. Keller, B. Krammer, M.S. Mueller, M.M. Resch, and E. Gabriel. MPI Develop-
ment Tools and Applications for the Grid. In Workshop on Grid Applications and
Programming Tools, held in conjunction with the GGF8 meetings, Seattle, June 2003.

[34] T. Kielmann, A. Merzky, H.E. Bal, F. Baude, D. Caromel, and F. Huet. Grid Appli-
cation Programming Environments. Technical Report TR-0003, Institute on Problem
Solving Environment, Tools and Grid Systems, CoreGRID - Network of Excellence,
June 2005.

[35] S. Matsuoka and H. Casanova. Network-Enabled Server Systems and
the Computational Grid. http://www.eece.unm.edu/\~dbader/grid/
WhitePapers/GF4-WG3-NES-whitepape%r-draft-000705.pdf, July
2000. Grid Forum, Advanced Programming Models Working Group whitepaper
(draft).

[36] S. Matsuoka, S. Shinjo, M. Aoyagi, S. Sekiguchi, H. Usami, and K. Miura.
Japanese Computational Grid Research Project: NAREGI. Proceedings of the IEEE,
93(3):522–533, March 2005.

[37] K. Moore. Recommendations for the Design and Implementation of NAT-
Tolerant Applications. Internet-draft, University of Tennessee, Febru-
ary 2002. http://old.iptel.org/ietf/firewall/arch/
draft-moore-nat-tolerance-recom%mendations-00.txt.

[38] MPICH-G. http://www.hpclab.niu.edu/mpi/.

[39] H. Nakada, S. Matsuoka, K. Seymour, J.J. Dongarra, C. Lee, and H. Casanova. A
GridRPC Model and API for End-User Applications. In GFD-R.052, GridRPC Work-
ing Group, June 2007.

[40] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards
a Global Computing Infrastructure. Future Generation Computing Systems, Meta-
computing Issue, 15(5-6):649–658, 1999.

[41] H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. Grid Computing: Making the
Global Infrastructure a Reality, chapter Ninf-G: a GridRPC system on the Globus
toolkit, pages 625–638. John Wiley & Sons Ltd, March 2003.

[42] Ninf. Ninf: A Global Computing Infrastructure. http://ninf.apgrid.org/.

[43] T.M. Oinn, M. Addis, J. Ferris, D. Marvin, R.M. Greenwood, T. Carver, M.R. Pocock,
A. Wipat, and P. Li. Taverna: A Tool for the Composition and Enactment of Bioinfor-
matics Workflows. In Bioinformatics, volume 20(17), pages 3045–3054, November
2004.

180 Y. Caniou, E. Caron, F. Desprez, H. Nakada, K. Seymour, Y. Tanaka

[44] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented comput-
ing: State of the art and research challenges. Computer, 40(11):38–45, 2007.

[45] PEGASUS. http://pegasus.isi.edu/.

[46] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet
Backplane Protocol: Storage in the Network. In NetStore ’99: Network Storage Sym-
posium. Internet2, October 1999.

[47] Globus Project. The Globus Project Web Page. http://www.globus.org.

[48] Globus ASCII Helper Protocol. http://www.cs.wisc.edu/condor/gahp/.

[49] M. Romberg. The UNICORE Architecture - Seamless Access to Distributed Re-
sources. In Proc. of 8th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC8), pages 287–293, 1999.

[50] M. Sato, T. Boku, and D. Takahashi. OmniRPC: a Grid RPC System for Parallel Pro-
gramming in Cluster and Grid Environment. In 3rd IEEE/ACM International Sympo-
sium on CLuster Computing and the Grid (CCGRID’03), pages 206–213, 2003.

[51] M. Sato, M. Hirano, Y. Tanaka, and S. Sekigushi. OmniRPC: A Grid RPC Facility
for Cluster and Global Computing in OpenMP. In WOMPAT, volume 2104 of Lecture
Notes in Computer Science, pages 130–136. Springer Verlag, 2001.

[52] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi. Ninf:
A Network based Information Library for a Global World-Wide Computing Infras-
tracture. In Proc. of HPCN’97 (LNCS-1225), pages 491–502, 1997.

[53] K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The End-User and Mid-
dleware APIs for GridRPC. In Workshop on Grid Application Programming Inter-
faces, In conjunction with GGF12, Brussels, Belgium, September 2004.

[54] G. Singh, E. Deelman, G. Mehta, K. Vahi, M.H. i Su, G.B. Berriman, J. Good, J.C.
Jacob, D.S. Katz, A. Lazzarini, K. Blackburn, and S. Koranda. The Pegasus Portal:
Web Based Grid Computing. In SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing., pages 680–686, New York, NY, USA, 2005. ACM Press.

[55] Scalable Intracampus Research Grid. http://icl.cs.utk.edu/sinrg.

[56] Statistical Parametric Mapping. http://www.fil.ion.ucl.ac.uk/spm/.

[57] Sun Grid Engine. http://gridengine.sunsource.net.

[58] A. Takefusa, S. Matsuoka, H. Ogawa, H. Nakada, H. Takagi, M. Sato, S. Sekiguchi,
and U. Nagashima. Multi-client LAN/WAN Performance Analysis of Ninf: a High-
Performance Global Computing System. In Supercomputing ’97, 1997.

[59] Takemiya, H. and Tanaka, Y. and Sekiguchi, S. Sustainable Adaptive Grid Super-
computing: Multiscale Simulation of Semiconductor Processing across the Pacific. In
Proc. of SC06, 2006.

High Performance GridRPC Middleware 181

[60] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A Ref-
erence Implementation of RPC-based Programming Middleware for Grid Computing.
Journal of Grid Computing, 1(1):41–51, 2003.

[61] Y. Tanaka, H. Takemiya, Y. Song, S. Sekiguchi, S. Ogata, T. Kouno, R.K. Kalia,
A. Nakano, and P. Vashishta. Implementation and evaluation of sustainable multiscale
simulations on the grid. In Proc. of Third Asia-Pacific Congress on Computational
Mechanics, 2007.

[62] Y. Tanimura, K. Seymour, E. Caron, A. Amar, H. Nakada, Y. Tanaka, and F. Desprez.
Interoperability Testing for The GridRPC API Specification. In GFD-E.102, GridRPC
Working Group, April 2007.

[63] Condor Team. The Directed Acyclic Graph Manager.

[64] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement. A new high
resolution code called RAMSES. Astronomy and Astrophysics, 385:337–364, 2002.

[65] R. Teyssier, S. Fromang, and E. Dormy. Kinematic dynamos using constrained trans-
port with high order Godunov schemes and adaptive mesh refinement. Journal of
Computational Physics, 218:44–67, October 2006.

[66] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In Fran Berman, Geof-
frey Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure
a Reality. John Wiley & Sons Inc., December 2002.

[67] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed Computing in Prac-
tice: the Condor Experience. Concurrency - Practice and Experience, 17(2-4):323–
356, 2005.

[68] R.V. van Nieuwpoort, J. Masen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann,
and H.E. Bal. Ibis: a Flexible and Efficient Java-based Grid Programming Environ-
ment. Concurrency and Computation: Practice and Experience, 17(7-8):1079–1107,
2005.

[69] A. YarKhan, J. Dongarra, and K. Seymour. GridSolve: The Evolution of Network
Enabled Solver. In James C. T. Pool Patrick Gaffney, editor, Grid-Based Problem
Solving Environments: IFIP TC2/WG 2.5 Working Conference on Grid-Based Prob-
lem Solving Environments (Prescott, AZ, July 2006), pages 215–226. Springer, 2007.

[70] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid Com-
puting, 2005.

