MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_cgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU. | |
magma_int_t | magma_cgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info) |
CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU. | |
magma_int_t | magma_dgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU. | |
magma_int_t | magma_dgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info) |
DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU. | |
magma_int_t | magma_dsgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaInt_ptr dipiv, magmaDouble_ptr dB, magma_int_t lddb, magmaDouble_ptr dX, magma_int_t lddx, magmaFloat_ptr dSX, magma_int_t *info) |
DSGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_SGETRF_GPU. | |
magma_int_t | magma_sgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU. | |
magma_int_t | magma_sgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info) |
SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU. | |
magma_int_t | magma_zcgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaInt_ptr dipiv, magmaDoubleComplex_ptr dB, magma_int_t lddb, magmaDoubleComplex_ptr dX, magma_int_t lddx, magmaFloatComplex_ptr dSX, magma_int_t *info) |
ZCGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_CGETRF_GPU. | |
magma_int_t | magma_zgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU. | |
magma_int_t | magma_zgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info) |
ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU. | |
magma_int_t magma_cgetrs_expert_gpu_work | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloatComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaFloatComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
magma_mode_t | mode, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU.
This is an expert interface, which exposes more controls to the user.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from CGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | COMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in] | mode | magma_mode_t
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_cgetrs_gpu | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloatComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaFloatComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from CGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | COMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_dgetrs_expert_gpu_work | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDouble_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaDouble_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
magma_mode_t | mode, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU.
This is an expert interface, which exposes more controls to the user.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | DOUBLE PRECISION array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by DGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from DGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | DOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in] | mode | magma_mode_t
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_dgetrs_gpu | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDouble_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaDouble_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | DOUBLE PRECISION array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by DGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from DGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | DOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_dsgetrs_gpu | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloat_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaInt_ptr | dipiv, | ||
magmaDouble_ptr | dB, | ||
magma_int_t | lddb, | ||
magmaDouble_ptr | dX, | ||
magma_int_t | lddx, | ||
magmaFloat_ptr | dSX, | ||
magma_int_t * | info ) |
DSGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_SGETRF_GPU.
B and X are in DOUBLE PRECISION, and A is in SINGLE PRECISION. This routine is used in the mixed precision iterative solver magma_dsgesv.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | SINGLE PRECISION array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array dA. LDDA >= max(1,N). |
[in] | dipiv | INTEGER array on the GPU, dimension (N) The pivot indices; for 1 <= i <= N, after permuting, row i of the matrix was moved to row dIPIV(i). Note this is different than IPIV from DGETRF, where interchanges are applied one-after-another. |
[in] | dB | DOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. |
[in] | lddb | INTEGER The leading dimension of the arrays X and B. LDDB >= max(1,N). |
[out] | dX | DOUBLE PRECISION array on the GPU, dimension (LDDX, NRHS) On exit, the solution matrix dX. |
[in] | lddx | INTEGER The leading dimension of the array dX, LDDX >= max(1,N). |
dSX | (workspace) SINGLE PRECISION array on the GPU used as workspace, dimension (N, NRHS) | |
[out] | info | INTEGER
|
magma_int_t magma_sgetrs_expert_gpu_work | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloat_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaFloat_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
magma_mode_t | mode, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.
This is an expert interface, which exposes more controls to the user.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | REAL array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by SGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from SGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | REAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in] | mode | magma_mode_t
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_sgetrs_gpu | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloat_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaFloat_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | REAL array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by SGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from SGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | REAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_zcgetrs_gpu | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloatComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaInt_ptr | dipiv, | ||
magmaDoubleComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magmaDoubleComplex_ptr | dX, | ||
magma_int_t | lddx, | ||
magmaFloatComplex_ptr | dSX, | ||
magma_int_t * | info ) |
ZCGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_CGETRF_GPU.
B and X are in COMPLEX_16, and A is in COMPLEX. This routine is used in the mixed precision iterative solver magma_zcgesv.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array dA. LDDA >= max(1,N). |
[in] | dipiv | INTEGER array on the GPU, dimension (N) The pivot indices; for 1 <= i <= N, after permuting, row i of the matrix was moved to row dIPIV(i). Note this is different than IPIV from ZGETRF, where interchanges are applied one-after-another. |
[in] | dB | COMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. |
[in] | lddb | INTEGER The leading dimension of the arrays X and B. LDDB >= max(1,N). |
[out] | dX | COMPLEX_16 array on the GPU, dimension (LDDX, NRHS) On exit, the solution matrix dX. |
[in] | lddx | INTEGER The leading dimension of the array dX, LDDX >= max(1,N). |
dSX | (workspace) COMPLEX array on the GPU used as workspace, dimension (N, NRHS) | |
[out] | info | INTEGER
|
magma_int_t magma_zgetrs_expert_gpu_work | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDoubleComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaDoubleComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
magma_mode_t | mode, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU.
This is an expert interface, which exposes more controls to the user.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX_16 array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from ZGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | COMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in] | mode | magma_mode_t
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_zgetrs_gpu | ( | magma_trans_t | trans, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDoubleComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaDoubleComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU.
[in] | trans | magma_trans_t Specifies the form of the system of equations:
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX_16 array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF_GPU. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in] | ipiv | INTEGER array, dimension (N) The pivot indices from ZGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | COMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|