MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
Loading...
Searching...
No Matches
getrs: LU forward and back solves

Functions

magma_int_t magma_cgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue)
 CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU.
 
magma_int_t magma_cgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU.
 
magma_int_t magma_dgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue)
 DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU.
 
magma_int_t magma_dgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info)
 DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU.
 
magma_int_t magma_dsgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaInt_ptr dipiv, magmaDouble_ptr dB, magma_int_t lddb, magmaDouble_ptr dX, magma_int_t lddx, magmaFloat_ptr dSX, magma_int_t *info)
 DSGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_SGETRF_GPU.
 
magma_int_t magma_sgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue)
 SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.
 
magma_int_t magma_sgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info)
 SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.
 
magma_int_t magma_zcgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaInt_ptr dipiv, magmaDoubleComplex_ptr dB, magma_int_t lddb, magmaDoubleComplex_ptr dX, magma_int_t lddx, magmaFloatComplex_ptr dSX, magma_int_t *info)
 ZCGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_CGETRF_GPU.
 
magma_int_t magma_zgetrs_expert_gpu_work (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info, magma_mode_t mode, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue)
 ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU.
 
magma_int_t magma_zgetrs_gpu (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU.
 

Detailed Description

Function Documentation

◆ magma_cgetrs_expert_gpu_work()

magma_int_t magma_cgetrs_expert_gpu_work ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaFloatComplex_ptr dB,
magma_int_t lddb,
magma_int_t * info,
magma_mode_t mode,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_queue_t queue )

CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU.

This is an expert interface, which exposes more controls to the user.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from CGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBCOMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in]modemagma_mode_t
  • = MagmaNative: Factorize dA using GPU only mode (currently not implemented);
  • = MagmaHybrid: Factorize dA using Hybrid (CPU/GPU) mode.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no factorization is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no factorization is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[in]queuemagma_queue_t
  • created/destroyed by the user outside the routine
  • Used for kernel execution

◆ magma_cgetrs_gpu()

magma_int_t magma_cgetrs_gpu ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaFloatComplex_ptr dB,
magma_int_t lddb,
magma_int_t * info )

CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by CGETRF_GPU.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from CGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBCOMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_dgetrs_expert_gpu_work()

magma_int_t magma_dgetrs_expert_gpu_work ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaDouble_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaDouble_ptr dB,
magma_int_t lddb,
magma_int_t * info,
magma_mode_t mode,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_queue_t queue )

DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU.

This is an expert interface, which exposes more controls to the user.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by DGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from DGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBDOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in]modemagma_mode_t
  • = MagmaNative: Factorize dA using GPU only mode (currently not implemented);
  • = MagmaHybrid: Factorize dA using Hybrid (CPU/GPU) mode.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no factorization is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no factorization is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[in]queuemagma_queue_t
  • created/destroyed by the user outside the routine
  • Used for kernel execution

◆ magma_dgetrs_gpu()

magma_int_t magma_dgetrs_gpu ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaDouble_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaDouble_ptr dB,
magma_int_t lddb,
magma_int_t * info )

DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by DGETRF_GPU.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by DGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from DGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBDOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_dsgetrs_gpu()

magma_int_t magma_dsgetrs_gpu ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaFloat_ptr dA,
magma_int_t ldda,
magmaInt_ptr dipiv,
magmaDouble_ptr dB,
magma_int_t lddb,
magmaDouble_ptr dX,
magma_int_t lddx,
magmaFloat_ptr dSX,
magma_int_t * info )

DSGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_SGETRF_GPU.

B and X are in DOUBLE PRECISION, and A is in SINGLE PRECISION. This routine is used in the mixed precision iterative solver magma_dsgesv.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dASINGLE PRECISION array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[in]dipivINTEGER array on the GPU, dimension (N) The pivot indices; for 1 <= i <= N, after permuting, row i of the matrix was moved to row dIPIV(i). Note this is different than IPIV from DGETRF, where interchanges are applied one-after-another.
[in]dBDOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B.
[in]lddbINTEGER The leading dimension of the arrays X and B. LDDB >= max(1,N).
[out]dXDOUBLE PRECISION array on the GPU, dimension (LDDX, NRHS) On exit, the solution matrix dX.
[in]lddxINTEGER The leading dimension of the array dX, LDDX >= max(1,N).
dSX(workspace) SINGLE PRECISION array on the GPU used as workspace, dimension (N, NRHS)
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_sgetrs_expert_gpu_work()

magma_int_t magma_sgetrs_expert_gpu_work ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaFloat_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaFloat_ptr dB,
magma_int_t lddb,
magma_int_t * info,
magma_mode_t mode,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_queue_t queue )

SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.

This is an expert interface, which exposes more controls to the user.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dAREAL array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by SGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from SGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBREAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in]modemagma_mode_t
  • = MagmaNative: Factorize dA using GPU only mode (currently not implemented);
  • = MagmaHybrid: Factorize dA using Hybrid (CPU/GPU) mode.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no factorization is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no factorization is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[in]queuemagma_queue_t
  • created/destroyed by the user outside the routine
  • Used for kernel execution

◆ magma_sgetrs_gpu()

magma_int_t magma_sgetrs_gpu ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaFloat_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaFloat_ptr dB,
magma_int_t lddb,
magma_int_t * info )

SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dAREAL array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by SGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from SGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBREAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_zcgetrs_gpu()

magma_int_t magma_zcgetrs_gpu ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magmaInt_ptr dipiv,
magmaDoubleComplex_ptr dB,
magma_int_t lddb,
magmaDoubleComplex_ptr dX,
magma_int_t lddx,
magmaFloatComplex_ptr dSX,
magma_int_t * info )

ZCGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by MAGMA_CGETRF_GPU.

B and X are in COMPLEX_16, and A is in COMPLEX. This routine is used in the mixed precision iterative solver magma_zcgesv.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[in]dipivINTEGER array on the GPU, dimension (N) The pivot indices; for 1 <= i <= N, after permuting, row i of the matrix was moved to row dIPIV(i). Note this is different than IPIV from ZGETRF, where interchanges are applied one-after-another.
[in]dBCOMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B.
[in]lddbINTEGER The leading dimension of the arrays X and B. LDDB >= max(1,N).
[out]dXCOMPLEX_16 array on the GPU, dimension (LDDX, NRHS) On exit, the solution matrix dX.
[in]lddxINTEGER The leading dimension of the array dX, LDDX >= max(1,N).
dSX(workspace) COMPLEX array on the GPU used as workspace, dimension (N, NRHS)
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_zgetrs_expert_gpu_work()

magma_int_t magma_zgetrs_expert_gpu_work ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaDoubleComplex_ptr dB,
magma_int_t lddb,
magma_int_t * info,
magma_mode_t mode,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_queue_t queue )

ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU.

This is an expert interface, which exposes more controls to the user.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from ZGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBCOMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in]modemagma_mode_t
  • = MagmaNative: Factorize dA using GPU only mode (currently not implemented);
  • = MagmaHybrid: Factorize dA using Hybrid (CPU/GPU) mode.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no factorization is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no factorization is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[in]queuemagma_queue_t
  • created/destroyed by the user outside the routine
  • Used for kernel execution

◆ magma_zgetrs_gpu()

magma_int_t magma_zgetrs_gpu ( magma_trans_t trans,
magma_int_t n,
magma_int_t nrhs,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magma_int_t * ipiv,
magmaDoubleComplex_ptr dB,
magma_int_t lddb,
magma_int_t * info )

ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF_GPU.

Parameters
[in]transmagma_trans_t Specifies the form of the system of equations:
  • = MagmaNoTrans: A * X = B (No transpose)
  • = MagmaTrans: A**T * X = B (Transpose)
  • = MagmaConjTrans: A**H * X = B (Conjugate transpose)
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF_GPU.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in]ipivINTEGER array, dimension (N) The pivot indices from ZGETRF; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).
[in,out]dBCOMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value