MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
Loading...
Searching...
No Matches
geqp3: QR factorization with column pivoting

Functions

magma_int_t magma_cgeqp3 (magma_int_t m, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magma_int_t *jpvt, magmaFloatComplex *tau, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t *info)
 CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_cgeqp3_expert_gpu_work (magma_int_t m, magma_int_t n, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *jpvt, magmaFloatComplex *tau, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_int_t *info, magma_queue_t queue)
 CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_cgeqp3_gpu (magma_int_t m, magma_int_t n, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *jpvt, magmaFloatComplex *tau, magmaFloatComplex_ptr dwork, magma_int_t lwork, float *rwork, magma_int_t *info)
 CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_dgeqp3 (magma_int_t m, magma_int_t n, double *A, magma_int_t lda, magma_int_t *jpvt, double *tau, double *work, magma_int_t lwork, magma_int_t *info)
 DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_dgeqp3_expert_gpu_work (magma_int_t m, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *jpvt, double *tau, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_int_t *info, magma_queue_t queue)
 DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_dgeqp3_gpu (magma_int_t m, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *jpvt, double *tau, magmaDouble_ptr dwork, magma_int_t lwork, magma_int_t *info)
 DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_sgeqp3 (magma_int_t m, magma_int_t n, float *A, magma_int_t lda, magma_int_t *jpvt, float *tau, float *work, magma_int_t lwork, magma_int_t *info)
 SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_sgeqp3_expert_gpu_work (magma_int_t m, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *jpvt, float *tau, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_int_t *info, magma_queue_t queue)
 SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_sgeqp3_gpu (magma_int_t m, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *jpvt, float *tau, magmaFloat_ptr dwork, magma_int_t lwork, magma_int_t *info)
 SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_zgeqp3 (magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *jpvt, magmaDoubleComplex *tau, magmaDoubleComplex *work, magma_int_t lwork, double *rwork, magma_int_t *info)
 ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_zgeqp3_expert_gpu_work (magma_int_t m, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *jpvt, magmaDoubleComplex *tau, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_int_t *info, magma_queue_t queue)
 ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 
magma_int_t magma_zgeqp3_gpu (magma_int_t m, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *jpvt, magmaDoubleComplex *tau, magmaDoubleComplex_ptr dwork, magma_int_t lwork, double *rwork, magma_int_t *info)
 ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
 

Detailed Description

Function Documentation

◆ magma_cgeqp3()

magma_int_t magma_cgeqp3 ( magma_int_t m,
magma_int_t n,
magmaFloatComplex * A,
magma_int_t lda,
magma_int_t * jpvt,
magmaFloatComplex * tau,
magmaFloatComplex * work,
magma_int_t lwork,
float * rwork,
magma_int_t * info )

CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauCOMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]work(workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
rwork(workspace, for [cz]geqp3 only) REAL array, dimension (2*N)
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_cgeqp3_expert_gpu_work()

magma_int_t magma_cgeqp3_expert_gpu_work ( magma_int_t m,
magma_int_t n,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
magmaFloatComplex * tau,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_int_t * info,
magma_queue_t queue )

CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dACOMPLEX array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauCOMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no computation is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no computation is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t
  • created/destroyed by the user

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_cgeqp3_gpu()

magma_int_t magma_cgeqp3_gpu ( magma_int_t m,
magma_int_t n,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
magmaFloatComplex * tau,
magmaFloatComplex_ptr dwork,
magma_int_t lwork,
float * rwork,
magma_int_t * info )

CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dACOMPLEX array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauCOMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]dwork(workspace) COMPLEX array on the GPU, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
Note: unlike the CPU interface of this routine, the GPU interface does not support a workspace query.
rwork(workspace, for [cz]geqp3 only) REAL array, dimension (2*N) For releases after 2.8.0, this argument is not used, but kept for backward compatibility. It can be passed as a null pointer.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_dgeqp3()

magma_int_t magma_dgeqp3 ( magma_int_t m,
magma_int_t n,
double * A,
magma_int_t lda,
magma_int_t * jpvt,
double * tau,
double * work,
magma_int_t lwork,
magma_int_t * info )

DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]ADOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauDOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]work(workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_dgeqp3_expert_gpu_work()

magma_int_t magma_dgeqp3_expert_gpu_work ( magma_int_t m,
magma_int_t n,
magmaDouble_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
double * tau,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_int_t * info,
magma_queue_t queue )

DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauDOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no computation is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no computation is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t
  • created/destroyed by the user

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_dgeqp3_gpu()

magma_int_t magma_dgeqp3_gpu ( magma_int_t m,
magma_int_t n,
magmaDouble_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
double * tau,
magmaDouble_ptr dwork,
magma_int_t lwork,
magma_int_t * info )

DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauDOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]dwork(workspace) DOUBLE PRECISION array on the GPU, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
Note: unlike the CPU interface of this routine, the GPU interface does not support a workspace query.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_sgeqp3()

magma_int_t magma_sgeqp3 ( magma_int_t m,
magma_int_t n,
float * A,
magma_int_t lda,
magma_int_t * jpvt,
float * tau,
float * work,
magma_int_t lwork,
magma_int_t * info )

SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]AREAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauREAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]work(workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_sgeqp3_expert_gpu_work()

magma_int_t magma_sgeqp3_expert_gpu_work ( magma_int_t m,
magma_int_t n,
magmaFloat_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
float * tau,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_int_t * info,
magma_queue_t queue )

SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauREAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no computation is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no computation is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t
  • created/destroyed by the user

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_sgeqp3_gpu()

magma_int_t magma_sgeqp3_gpu ( magma_int_t m,
magma_int_t n,
magmaFloat_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
float * tau,
magmaFloat_ptr dwork,
magma_int_t lwork,
magma_int_t * info )

SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauREAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]dwork(workspace) REAL array on the GPU, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
Note: unlike the CPU interface of this routine, the GPU interface does not support a workspace query.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_zgeqp3()

magma_int_t magma_zgeqp3 ( magma_int_t m,
magma_int_t n,
magmaDoubleComplex * A,
magma_int_t lda,
magma_int_t * jpvt,
magmaDoubleComplex * tau,
magmaDoubleComplex * work,
magma_int_t lwork,
double * rwork,
magma_int_t * info )

ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]ACOMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauCOMPLEX_16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]work(workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
rwork(workspace, for [cz]geqp3 only) DOUBLE PRECISION array, dimension (2*N)
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_zgeqp3_expert_gpu_work()

magma_int_t magma_zgeqp3_expert_gpu_work ( magma_int_t m,
magma_int_t n,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
magmaDoubleComplex * tau,
void * host_work,
magma_int_t * lwork_host,
void * device_work,
magma_int_t * lwork_device,
magma_int_t * info,
magma_queue_t queue )

ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauCOMPLEX_16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[in,out]host_workWorkspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned()
[in,out]lwork_hostINTEGER pointer The size of the workspace (host_work) in bytes
  • lwork_host[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_host. The workspace itself is not referenced, and no computation is performed.
  • lwork[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_host.
Parameters
[in,out]device_workWorkspace, allocated on device (GPU) memory.
[in,out]lwork_deviceINTEGER pointer The size of the workspace (device_work) in bytes
  • lwork_device[0] < 0: a workspace query is assumed, the routine calculates the required amount of workspace and returns it in lwork_device. The workspace itself is not referenced, and no computation is performed.
  • lwork_device[0] >= 0: the routine assumes that the user has provided a workspace with the size in lwork_device.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t
  • created/destroyed by the user

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

◆ magma_zgeqp3_gpu()

magma_int_t magma_zgeqp3_gpu ( magma_int_t m,
magma_int_t n,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magma_int_t * jpvt,
magmaDoubleComplex * tau,
magmaDoubleComplex_ptr dwork,
magma_int_t lwork,
double * rwork,
magma_int_t * info )

ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[in,out]jpvtINTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
[out]tauCOMPLEX_16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
[out]dwork(workspace) COMPLEX_16 array on the GPU, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK. For [sd]geqp3, LWORK >= (N+1)*NB + 2*N; for [cz]geqp3, LWORK >= (N+1)*NB, where NB is the optimal blocksize.
Note: unlike the CPU interface of this routine, the GPU interface does not support a workspace query.
rwork(workspace, for [cz]geqp3 only) DOUBLE PRECISION array, dimension (2*N) For releases after 2.8.0, this argument is not used, but kept for backward compatibility. It can be passed as a null pointer.
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).