![]() |
MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_cgeev (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *w, magmaFloatComplex *VL, magma_int_t ldvl, magmaFloatComplex *VR, magma_int_t ldvr, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t *info) |
CGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_cgeev_m (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *w, magmaFloatComplex *VL, magma_int_t ldvl, magmaFloatComplex *VR, magma_int_t ldvr, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t *info) |
CGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_dgeev (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, double *A, magma_int_t lda, double *wr, double *wi, double *VL, magma_int_t ldvl, double *VR, magma_int_t ldvr, double *work, magma_int_t lwork, magma_int_t *info) |
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_dgeev_m (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, double *A, magma_int_t lda, double *wr, double *wi, double *VL, magma_int_t ldvl, double *VR, magma_int_t ldvr, double *work, magma_int_t lwork, magma_int_t *info) |
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_sgeev (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, float *A, magma_int_t lda, float *wr, float *wi, float *VL, magma_int_t ldvl, float *VR, magma_int_t ldvr, float *work, magma_int_t lwork, magma_int_t *info) |
SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_sgeev_m (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, float *A, magma_int_t lda, float *wr, float *wi, float *VL, magma_int_t ldvl, float *VR, magma_int_t ldvr, float *work, magma_int_t lwork, magma_int_t *info) |
SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_zgeev (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *w, magmaDoubleComplex *VL, magma_int_t ldvl, magmaDoubleComplex *VR, magma_int_t ldvr, magmaDoubleComplex *work, magma_int_t lwork, double *rwork, magma_int_t *info) |
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t | magma_zgeev_m (magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *w, magmaDoubleComplex *VL, magma_int_t ldvl, magmaDoubleComplex *VR, magma_int_t ldvr, magmaDoubleComplex *work, magma_int_t lwork, double *rwork, magma_int_t *info) |
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
magma_int_t magma_cgeev | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
magmaFloatComplex * | A, | ||
magma_int_t | lda, | ||
magmaFloatComplex * | w, | ||
magmaFloatComplex * | VL, | ||
magma_int_t | ldvl, | ||
magmaFloatComplex * | VR, | ||
magma_int_t | ldvr, | ||
magmaFloatComplex * | work, | ||
magma_int_t | lwork, | ||
float * | rwork, | ||
magma_int_t * | info ) |
CGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | w | COMPLEX array, dimension (N) w contains the computed eigenvalues. |
[out] | VL | COMPLEX array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. u(j) = VL(:,j), the j-th column of VL. |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | COMPLEX array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. v(j) = VR(:,j), the j-th column of VR. |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (1 + nb)*N. For optimal performance, LWORK >= (1 + 2*nb)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
rwork | (workspace) REAL array, dimension (2*N) | |
[out] | info | INTEGER
|
magma_int_t magma_cgeev_m | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
magmaFloatComplex * | A, | ||
magma_int_t | lda, | ||
magmaFloatComplex * | w, | ||
magmaFloatComplex * | VL, | ||
magma_int_t | ldvl, | ||
magmaFloatComplex * | VR, | ||
magma_int_t | ldvr, | ||
magmaFloatComplex * | work, | ||
magma_int_t | lwork, | ||
float * | rwork, | ||
magma_int_t * | info ) |
CGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | w | COMPLEX array, dimension (N) W contains the computed eigenvalues. |
[out] | VL | COMPLEX array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. u(j) = VL(:,j), the j-th column of VL. |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | COMPLEX array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. v(j) = VR(:,j), the j-th column of VR. |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (1 + nb + nb*ngpu)*N. For optimal performance, LWORK >= (1 + 2*nb + nb*ngpu)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
rwork | (workspace) REAL array, dimension (2*N) | |
[out] | info | INTEGER
|
magma_int_t magma_dgeev | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
double * | A, | ||
magma_int_t | lda, | ||
double * | wr, | ||
double * | wi, | ||
double * | VL, | ||
magma_int_t | ldvl, | ||
double * | VR, | ||
magma_int_t | ldvr, | ||
double * | work, | ||
magma_int_t | lwork, | ||
magma_int_t * | info ) |
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**T * A = lambda(j) * u(j)**T where u(j)**T denotes the transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | wr | DOUBLE PRECISION array, dimension (N) |
[out] | wi | DOUBLE PRECISION array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first. |
[out] | VL | DOUBLE PRECISION array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | DOUBLE PRECISION array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (2 + nb)*N. For optimal performance, LWORK >= (2 + 2*nb)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
[out] | info | INTEGER
|
magma_int_t magma_dgeev_m | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
double * | A, | ||
magma_int_t | lda, | ||
double * | wr, | ||
double * | wi, | ||
double * | VL, | ||
magma_int_t | ldvl, | ||
double * | VR, | ||
magma_int_t | ldvr, | ||
double * | work, | ||
magma_int_t | lwork, | ||
magma_int_t * | info ) |
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**T * A = lambda(j) * u(j)**T where u(j)**T denotes the transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | wr | DOUBLE PRECISION array, dimension (N) |
[out] | wi | DOUBLE PRECISION array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first. |
[out] | VL | DOUBLE PRECISION array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | DOUBLE PRECISION array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (2 + nb + nb*ngpu)*N. For optimal performance, LWORK >= (2 + 2*nb + nb*ngpu)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
[out] | info | INTEGER
|
magma_int_t magma_sgeev | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
float * | A, | ||
magma_int_t | lda, | ||
float * | wr, | ||
float * | wi, | ||
float * | VL, | ||
magma_int_t | ldvl, | ||
float * | VR, | ||
magma_int_t | ldvr, | ||
float * | work, | ||
magma_int_t | lwork, | ||
magma_int_t * | info ) |
SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**T * A = lambda(j) * u(j)**T where u(j)**T denotes the transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | REAL array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | wr | REAL array, dimension (N) |
[out] | wi | REAL array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first. |
[out] | VL | REAL array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | REAL array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (2 + nb)*N. For optimal performance, LWORK >= (2 + 2*nb)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
[out] | info | INTEGER
|
magma_int_t magma_sgeev_m | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
float * | A, | ||
magma_int_t | lda, | ||
float * | wr, | ||
float * | wi, | ||
float * | VL, | ||
magma_int_t | ldvl, | ||
float * | VR, | ||
magma_int_t | ldvr, | ||
float * | work, | ||
magma_int_t | lwork, | ||
magma_int_t * | info ) |
SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**T * A = lambda(j) * u(j)**T where u(j)**T denotes the transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | REAL array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | wr | REAL array, dimension (N) |
[out] | wi | REAL array, dimension (N) WR and WI contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first. |
[out] | VL | REAL array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. If the j-th eigenvalue is real, then u(j) = VL(:,j), the j-th column of VL. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and u(j+1) = VL(:,j) - i*VL(:,j+1). |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | REAL array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. If the j-th eigenvalue is real, then v(j) = VR(:,j), the j-th column of VR. If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and v(j+1) = VR(:,j) - i*VR(:,j+1). |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (2 + nb + nb*ngpu)*N. For optimal performance, LWORK >= (2 + 2*nb + nb*ngpu)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
[out] | info | INTEGER
|
magma_int_t magma_zgeev | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
magmaDoubleComplex * | A, | ||
magma_int_t | lda, | ||
magmaDoubleComplex * | w, | ||
magmaDoubleComplex * | VL, | ||
magma_int_t | ldvl, | ||
magmaDoubleComplex * | VR, | ||
magma_int_t | ldvr, | ||
magmaDoubleComplex * | work, | ||
magma_int_t | lwork, | ||
double * | rwork, | ||
magma_int_t * | info ) |
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | COMPLEX_16 array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | w | COMPLEX_16 array, dimension (N) w contains the computed eigenvalues. |
[out] | VL | COMPLEX_16 array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. u(j) = VL(:,j), the j-th column of VL. |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | COMPLEX_16 array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. v(j) = VR(:,j), the j-th column of VR. |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (1 + nb)*N. For optimal performance, LWORK >= (1 + 2*nb)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
rwork | (workspace) DOUBLE PRECISION array, dimension (2*N) | |
[out] | info | INTEGER
|
magma_int_t magma_zgeev_m | ( | magma_vec_t | jobvl, |
magma_vec_t | jobvr, | ||
magma_int_t | n, | ||
magmaDoubleComplex * | A, | ||
magma_int_t | lda, | ||
magmaDoubleComplex * | w, | ||
magmaDoubleComplex * | VL, | ||
magma_int_t | ldvl, | ||
magmaDoubleComplex * | VR, | ||
magma_int_t | ldvr, | ||
magmaDoubleComplex * | work, | ||
magma_int_t | lwork, | ||
double * | rwork, | ||
magma_int_t * | info ) |
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
[in] | jobvl | magma_vec_t
|
[in] | jobvr | magma_vec_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | COMPLEX_16 array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | w | COMPLEX_16 array, dimension (N) W contains the computed eigenvalues. |
[out] | VL | COMPLEX_16 array, dimension (LDVL,N) If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = MagmaNoVec, VL is not referenced. u(j) = VL(:,j), the j-th column of VL. |
[in] | ldvl | INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = MagmaVec, LDVL >= N. |
[out] | VR | COMPLEX_16 array, dimension (LDVR,N) If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = MagmaNoVec, VR is not referenced. v(j) = VR(:,j), the j-th column of VR. |
[in] | ldvr | INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = MagmaVec, LDVR >= N. |
[out] | work | (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. LWORK >= (1 + nb + nb*ngpu)*N. For optimal performance, LWORK >= (1 + 2*nb + nb*ngpu)*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. |
rwork | (workspace) DOUBLE PRECISION array, dimension (2*N) | |
[out] | info | INTEGER
|