MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
Loading...
Searching...
No Matches
Level 3: matrix-matrix operations, O(n^3) work

Topics

 gemm: General matrix multiply: C = AB + C
 \(C = \alpha \;op(A) \;op(B) + \beta C\)
 
 hemm: Hermitian matrix multiply
 \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian
 
 herk: Hermitian rank k update
 \(C = \alpha A A^T + \beta C\) where \(C\) is Hermitian
 
 her2k: Hermitian rank 2k update
 \(C = \alpha A B^T + \alpha B A^T + \beta C\) where \(C\) is Hermitian
 
 symm: Symmetric matrix multiply
 \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is symmetric
 
 syrk: Symmetric rank k update
 \(C = \alpha A A^T + \beta C\) where \(C\) is symmetric
 
 syr2k: Symmetric rank 2k update
 \(C = \alpha A B^T + \alpha B A^T + \beta C\) where \(C\) is symmetric
 
 trmm: Triangular matrix multiply
 \(B = \alpha \;op(A)\; B\) or \(B = \alpha B \;op(A) \) where \(A\) is triangular
 
 trsm: Triangular solve matrix
 \(C = op(A)^{-1} B \) or \(C = B \;op(A)^{-1}\) where \(A\) is triangular
 
 trtri: Triangular inverse; used in getri, potri
 \(A = A^{-1}\) where \(A\) is triangular
 
 trtri_diag: Invert diagonal blocks of triangular matrix; used in trsm
 
 

Detailed Description

Matrix-matrix operations that perform \(O(n^3)\) work on \(O(n^2)\) data. These benefit from cache reuse, since many operations can be performed for every read from main memory.