MAGMA  2.0.2
Matrix Algebra for GPU and Multicore Architectures
single-complex precision

Functions

magma_int_t magma_ccuspaxpy (magmaFloatComplex *alpha, magma_c_matrix A, magmaFloatComplex *beta, magma_c_matrix B, magma_c_matrix *AB, magma_queue_t queue)
 This is an interface to the cuSPARSE routine csrgeam computing the sum of two sparse matrices stored in csr format: More...
 
magma_int_t magma_ccuspmm (magma_c_matrix A, magma_c_matrix B, magma_c_matrix *AB, magma_queue_t queue)
 This is an interface to the cuSPARSE routine csrmm computing the product of two sparse matrices stored in csr format. More...
 
magma_int_t magma_ccustomspmv (magmaFloatComplex alpha, magma_c_matrix x, magmaFloatComplex beta, magma_c_matrix y, magma_queue_t queue)
 This is an interface to any custom sparse matrix vector product. More...
 
magma_int_t magma_c_spmv (magmaFloatComplex alpha, magma_c_matrix A, magma_c_matrix x, magmaFloatComplex beta, magma_c_matrix y, magma_queue_t queue)
 For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y. More...
 
magma_int_t magma_c_spmv_shift (magmaFloatComplex alpha, magma_c_matrix A, magmaFloatComplex lambda, magma_c_matrix x, magmaFloatComplex beta, magma_int_t offset, magma_int_t blocksize, magma_index_t *add_rows, magma_c_matrix y, magma_queue_t queue)
 For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * ( A - lambda I ) * x + beta * y. More...
 
magma_int_t magma_c_spmm (magmaFloatComplex alpha, magma_c_matrix A, magma_c_matrix B, magma_c_matrix *C, magma_queue_t queue)
 For a given input matrix A and B and scalar alpha, the wrapper determines the suitable SpMV computing C = alpha * A * B. More...
 

Detailed Description

Function Documentation

magma_int_t magma_c_spmm ( magmaFloatComplex  alpha,
magma_c_matrix  A,
magma_c_matrix  B,
magma_c_matrix *  C,
magma_queue_t  queue 
)

For a given input matrix A and B and scalar alpha, the wrapper determines the suitable SpMV computing C = alpha * A * B.

Parameters
[in]alphamagmaFloatComplex scalar alpha
[in]Amagma_c_matrix sparse matrix A
[in]Bmagma_c_matrix sparse matrix C
[out]Cmagma_c_matrix * outpur sparse matrix C
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_c_spmv ( magmaFloatComplex  alpha,
magma_c_matrix  A,
magma_c_matrix  x,
magmaFloatComplex  beta,
magma_c_matrix  y,
magma_queue_t  queue 
)

For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y.

Parameters
[in]alphamagmaFloatComplex scalar alpha
[in]Amagma_c_matrix sparse matrix A
[in]xmagma_c_matrix input vector x
[in]betamagmaFloatComplex scalar beta
[out]ymagma_c_matrix output vector y
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_c_spmv_shift ( magmaFloatComplex  alpha,
magma_c_matrix  A,
magmaFloatComplex  lambda,
magma_c_matrix  x,
magmaFloatComplex  beta,
magma_int_t  offset,
magma_int_t  blocksize,
magma_index_t *  add_rows,
magma_c_matrix  y,
magma_queue_t  queue 
)

For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * ( A - lambda I ) * x + beta * y.

Parameters
alphamagmaFloatComplex scalar alpha
Amagma_c_matrix sparse matrix A
lambdamagmaFloatComplex scalar lambda
xmagma_c_matrix input vector x
betamagmaFloatComplex scalar beta
offsetmagma_int_t in case not the main diagonal is scaled
blocksizemagma_int_t in case of processing multiple vectors
add_rowsmagma_int_t* in case the matrixpowerskernel is used
ymagma_c_matrix output vector y
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_ccuspaxpy ( magmaFloatComplex *  alpha,
magma_c_matrix  A,
magmaFloatComplex *  beta,
magma_c_matrix  B,
magma_c_matrix *  AB,
magma_queue_t  queue 
)

This is an interface to the cuSPARSE routine csrgeam computing the sum of two sparse matrices stored in csr format:

C = alpha * A + beta * B

Parameters
[in]alphamagmaFloatComplex* scalar
[in]Amagma_c_matrix input matrix
[in]betamagmaFloatComplex* scalar
[in]Bmagma_c_matrix input matrix
[out]ABmagma_c_matrix* output matrix AB = alpha * A + beta * B
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_ccuspmm ( magma_c_matrix  A,
magma_c_matrix  B,
magma_c_matrix *  AB,
magma_queue_t  queue 
)

This is an interface to the cuSPARSE routine csrmm computing the product of two sparse matrices stored in csr format.

Parameters
[in]Amagma_c_matrix input matrix
[in]Bmagma_c_matrix input matrix
[out]ABmagma_c_matrix* output matrix AB = A * B
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_ccustomspmv ( magmaFloatComplex  alpha,
magma_c_matrix  x,
magmaFloatComplex  beta,
magma_c_matrix  y,
magma_queue_t  queue 
)

This is an interface to any custom sparse matrix vector product.

It should compute y = alpha*FUNCTION(x) + beta*y The vectors are located on the device, the scalars on the CPU.

Parameters
[in]alphamagmaFloatComplex scalar alpha
[in]xmagma_c_matrix input vector x
[in]betamagmaFloatComplex scalar beta
[out]ymagma_c_matrix output vector y
[in]queuemagma_queue_t Queue to execute in.