MAGMA  1.7.0
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
single precision

Functions

magma_int_t magma_sgesv (magma_int_t n, magma_int_t nrhs, float *A, magma_int_t lda, magma_int_t *ipiv, float *B, magma_int_t ldb, magma_int_t *info)
 SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More...
 
magma_int_t magma_sgesv_batched (magma_int_t n, magma_int_t nrhs, float **dA_array, magma_int_t ldda, magma_int_t **dipiv_array, float **dB_array, magma_int_t lddb, magma_int_t *dinfo_array, magma_int_t batchCount, magma_queue_t queue)
 SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More...
 
magma_int_t magma_sgesv_gpu (magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info)
 SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More...
 
magma_int_t magma_sgesv_nopiv_batched (magma_int_t n, magma_int_t nrhs, float **dA_array, magma_int_t ldda, float **dB_array, magma_int_t lddb, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
 SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More...
 
magma_int_t magma_sgesv_nopiv_gpu (magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info)
 SGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices. More...
 
magma_int_t magma_sgesv_rbt (magma_bool_t ref, magma_int_t n, magma_int_t nrhs, float *A, magma_int_t lda, float *B, magma_int_t ldb, magma_int_t *info)
 SGESV_RBT solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More...
 
magma_int_t magma_sgesv_rbt_batched (magma_int_t n, magma_int_t nrhs, float **dA_array, magma_int_t ldda, float **dB_array, magma_int_t lddb, magma_int_t *dinfo_array, magma_int_t batchCount, magma_queue_t queue)
 SGESV solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU. More...
 

Detailed Description

Function Documentation

magma_int_t magma_sgesv ( magma_int_t  n,
magma_int_t  nrhs,
float *  A,
magma_int_t  lda,
magma_int_t *  ipiv,
float *  B,
magma_int_t  ldb,
magma_int_t *  info 
)

SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in,out]AREAL array, dimension (LDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]ipivINTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
[in,out]BREAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]ldbINTEGER The leading dimension of the array B. LDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_sgesv_batched ( magma_int_t  n,
magma_int_t  nrhs,
float **  dA_array,
magma_int_t  ldda,
magma_int_t **  dipiv_array,
float **  dB_array,
magma_int_t  lddb,
magma_int_t *  dinfo_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

This is a batched version that solves batchCount N-by-N matrices in parallel. dA, dB, ipiv, and info become arrays with one entry per matrix.

Parameters
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
[out]dipiv_arrayArray of pointers, dimension (batchCount), for corresponding matrices. Each is an INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
[in,out]dB_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDB >= max(1,N).
[out]dinfo_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_sgesv_gpu ( magma_int_t  n,
magma_int_t  nrhs,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  ipiv,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[out]ipivINTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).
[in,out]dBREAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_sgesv_nopiv_batched ( magma_int_t  n,
magma_int_t  nrhs,
float **  dA_array,
magma_int_t  ldda,
float **  dB_array,
magma_int_t  lddb,
magma_int_t *  info_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

SGESV solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition without pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

This is a batched version that solves batchCount N-by-N matrices in parallel. dA, dB, and info become arrays with one entry per matrix.

Parameters
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
[in,out]dB_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDB >= max(1,N).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_sgesv_nopiv_gpu ( magma_int_t  n,
magma_int_t  nrhs,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

SGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dAREAL array on the GPU, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L and U from the factorization A = L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBREAL array on the GPU, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_sgesv_rbt ( magma_bool_t  ref,
magma_int_t  n,
magma_int_t  nrhs,
float *  A,
magma_int_t  lda,
float *  B,
magma_int_t  ldb,
magma_int_t *  info 
)

SGESV_RBT solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.

Random Butterfly Tranformation is applied on A and B, then the LU decomposition with no pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B. The solution can then be improved using iterative refinement.

Parameters
[in]refmagma_bool_t Specifies if iterative refinement have to be applied to improve the solution.
  • = MagmaTrue: Iterative refinement is applied.
  • = MagmaFalse: Iterative refinement is not applied.
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in,out]AREAL array, dimension (LDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in,out]BREAL array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]ldbINTEGER The leading dimension of the array B. LDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_sgesv_rbt_batched ( magma_int_t  n,
magma_int_t  nrhs,
float **  dA_array,
magma_int_t  ldda,
float **  dB_array,
magma_int_t  lddb,
magma_int_t *  dinfo_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

SGESV solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by SGETRF_GPU.

This is a batched version that solves batchCount N-by-N matrices in parallel. dA, dB, and info become arrays with one entry per matrix.

Parameters
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
[in,out]dB_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDB >= max(1,N).
[out]dinfo_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.