MAGMA  1.6.3
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
double precision

Functions

void magma_dprint (magma_int_t m, magma_int_t n, const double *A, magma_int_t lda)
 magma_dprint prints a matrix that is located on the CPU host. More...
 
void magma_dprint_gpu (magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda)
 magma_dprint_gpu prints a matrix that is located on the GPU device. More...
 
magma_int_t magma_dnan_inf (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *A, magma_int_t lda, magma_int_t *cnt_nan, magma_int_t *cnt_inf)
 magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values. More...
 
magma_int_t magma_dnan_inf_gpu (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magma_int_t *cnt_nan, magma_int_t *cnt_inf)
 magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values. More...
 
void magmablas_dgeadd_q (magma_int_t m, magma_int_t n, double alpha, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_queue_t queue)
 ZGEADD adds two matrices, dB = alpha*dA + dB. More...
 
void magmablas_dgeadd (magma_int_t m, magma_int_t n, double alpha, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb)
 
void magmablas_dgeadd_batched_q (magma_int_t m, magma_int_t n, double alpha, magmaDouble_const_ptr const dAarray[], magma_int_t ldda, magmaDouble_ptr dBarray[], magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue)
 ZGEADD adds two sets of matrices, dAarray[i] = alpha*dAarray[i] + dBarray[i], for i = 0, ..., batchCount-1. More...
 
void magmablas_dgeadd_batched (magma_int_t m, magma_int_t n, double alpha, magmaDouble_const_ptr const dAarray[], magma_int_t ldda, magmaDouble_ptr dBarray[], magma_int_t lddb, magma_int_t batchCount)
 
void magmablas_dlacpy_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_queue_t queue)
 DLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB. More...
 
void magmablas_dlacpy (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb)
 
void magmablas_dlacpy_batched (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaDouble_const_ptr const dAarray[], magma_int_t ldda, magmaDouble_ptr dBarray[], magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue)
 DLACPY_BATCHED copies all or part of each two-dimensional matrix dAarray[i] to matrix dBarray[i], for 0 <= i < batchcount. More...
 
void magmablas_dlacpy_sym_in_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t *rows, magma_int_t *perm, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_queue_t queue)
 DLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB. More...
 
void magmablas_dlacpy_sym_in (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t *rows, magma_int_t *perm, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb)
 
void magmablas_dlacpy_sym_out_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t *rows, magma_int_t *perm, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_queue_t queue)
 DLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB. More...
 
void magmablas_dlacpy_sym_out (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t *rows, magma_int_t *perm, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb)
 
void magmablas_dlag2s_q (magma_int_t m, magma_int_t n, magmaDouble_const_ptr A, magma_int_t lda, magmaFloat_ptr SA, magma_int_t ldsa, magma_int_t *info, magma_queue_t queue)
 DLAG2S_Q converts a double-real matrix, A, to a single-real matrix, SA. More...
 
void magmablas_dlag2s (magma_int_t m, magma_int_t n, magmaDouble_const_ptr A, magma_int_t lda, magmaFloat_ptr SA, magma_int_t ldsa, magma_int_t *info)
 
double magmablas_dlange (magma_norm_t norm, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dwork)
 DLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A. More...
 
double magmablas_dlansy (magma_norm_t norm, magma_uplo_t uplo, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dwork)
 DLANSY returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A. More...
 
void magmablas_dlascl_q (magma_type_t type, magma_int_t kl, magma_int_t ku, double cfrom, double cto, magma_int_t m, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_queue_t queue, magma_int_t *info)
 DLASCL multiplies the M by N real matrix A by the real scalar CTO/CFROM. More...
 
void magmablas_dlascl (magma_type_t type, magma_int_t kl, magma_int_t ku, double cfrom, double cto, magma_int_t m, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_dlascl2_q (magma_type_t type, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dD, magmaDouble_ptr dA, magma_int_t ldda, magma_queue_t queue, magma_int_t *info)
 DLASCL2 scales the M by N real matrix A by the real diagonal matrix dD. More...
 
void magmablas_dlascl2 (magma_type_t type, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dD, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_dlascl_2x2_q (magma_type_t type, magma_int_t m, const double *dW, magma_int_t lddw, double *dA, magma_int_t ldda, magma_int_t *info, magma_queue_t queue)
 DLASCL_2x2 scales the M by M real matrix A by the 2-by-2 pivot. More...
 
void magmablas_dlascl_2x2 (magma_type_t type, magma_int_t m, double *dW, magma_int_t lddw, double *dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_dlascl_diag_q (magma_type_t type, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dD, magma_int_t lddd, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info, magma_queue_t queue)
 DLASCL_DIAG scales the M by N real matrix A by the real diagonal matrix dD. More...
 
void magmablas_dlascl_diag (magma_type_t type, magma_int_t m, magma_int_t n, magmaDouble_const_ptr dD, magma_int_t lddd, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_dlaset_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, double offdiag, double diag, magmaDouble_ptr dA, magma_int_t ldda, magma_queue_t queue)
 DLASET_Q initializes a 2-D array A to DIAG on the diagonal and OFFDIAG on the off-diagonals. More...
 
void magmablas_dlaset (magma_uplo_t uplo, magma_int_t m, magma_int_t n, double offdiag, double diag, magmaDouble_ptr dA, magma_int_t ldda)
 
void magmablas_dlaset_band_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t k, double offdiag, double diag, magmaDouble_ptr dA, magma_int_t ldda, magma_queue_t queue)
 DLASET_BAND_STREAM initializes the main diagonal of dA to DIAG, and the K-1 sub- or super-diagonals to OFFDIAG. More...
 
void magmablas_dlaset_band (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t k, double offdiag, double diag, magmaDouble_ptr dA, magma_int_t ldda)
 
void magmablas_dlaswp_q (magma_int_t n, magmaDouble_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

DLASWP performs a series of row interchanges on the matrix A. More...
 
void magmablas_dlaswp (magma_int_t n, magmaDouble_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
 
void magmablas_dlaswpx_q (magma_int_t n, magmaDouble_ptr dA, magma_int_t ldx, magma_int_t ldy, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

DLASWPX performs a series of row interchanges on the matrix A. More...
 
void magmablas_dlaswpx (magma_int_t n, magmaDouble_ptr dA, magma_int_t ldx, magma_int_t ldy, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
 
void magmablas_dlaswp2_q (magma_int_t n, magmaDouble_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, magmaInt_const_ptr d_ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

DLASWP2 performs a series of row interchanges on the matrix A. More...
 
void magmablas_dlaswp2 (magma_int_t n, magmaDouble_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, magmaInt_const_ptr d_ipiv, magma_int_t inci)
 
void magmablas_dlaswp_sym_q (magma_int_t n, double *dA, magma_int_t lda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

DLASWPX performs a series of row interchanges on the matrix A. More...
 
void magmablas_dlaswp_sym (magma_int_t n, double *dA, magma_int_t lda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
 
void magmablas_dlat2s_q (magma_uplo_t uplo, magma_int_t n, magmaDouble_const_ptr A, magma_int_t lda, magmaFloat_ptr SA, magma_int_t ldsa, magma_int_t *info, magma_queue_t queue)
 DLAT2S converts a double-real matrix, A, to a single-real matrix, SA. More...
 
void magmablas_dlat2s (magma_uplo_t uplo, magma_int_t n, magmaDouble_const_ptr A, magma_int_t lda, magmaFloat_ptr SA, magma_int_t ldsa, magma_int_t *info)
 
void magmablas_dslaswp_q (magma_int_t n, magmaDouble_ptr A, magma_int_t lda, magmaFloat_ptr SA, magma_int_t m, const magma_int_t *ipiv, magma_int_t incx, magma_queue_t queue)
 Row i of A is cast to single precision in row ipiv[i] of SA (incx > 0), or row i of SA is cast to double precision in row ipiv[i] of A (incx < 0), for 0 <= i < M. More...
 
void magmablas_dslaswp (magma_int_t n, magmaDouble_ptr A, magma_int_t lda, magmaFloat_ptr SA, magma_int_t m, const magma_int_t *ipiv, magma_int_t incx)
 
void magmablas_dswapdblk_q (magma_int_t n, magma_int_t nb, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t inca, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t incb, magma_queue_t queue)
 dswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU. More...
 
void magmablas_dswapdblk (magma_int_t n, magma_int_t nb, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t inca, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t incb)
 
void magmablas_dswapdblk_batched_q (magma_int_t n, magma_int_t nb, double **dA_array, magma_int_t ldda, magma_int_t inca, double **dB_array, magma_int_t lddb, magma_int_t incb, magma_int_t batchCount, magma_queue_t queue)
 dswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU. More...
 
void magmablas_dswapdblk_batched (magma_int_t n, magma_int_t nb, double **dA_array, magma_int_t ldda, magma_int_t inca, double **dB_array, magma_int_t lddb, magma_int_t incb, magma_int_t batchCount)
 
void magmablas_dsymmetrize_q (magma_uplo_t uplo, magma_int_t m, magmaDouble_ptr dA, magma_int_t ldda, magma_queue_t queue)
 DSYMMETRIZE copies lower triangle to upper triangle, or vice-versa, to make dA a general representation of a symmetric matrix. More...
 
void magmablas_dsymmetrize (magma_uplo_t uplo, magma_int_t m, magmaDouble_ptr dA, magma_int_t ldda)
 
void magmablas_dsymmetrize_tiles_q (magma_uplo_t uplo, magma_int_t m, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t ntile, magma_int_t mstride, magma_int_t nstride, magma_queue_t queue)
 DSYMMETRIZE_TILES copies lower triangle to upper triangle, or vice-versa, to make some blocks of dA into general representations of a symmetric block. More...
 
void magmablas_dsymmetrize_tiles (magma_uplo_t uplo, magma_int_t m, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t ntile, magma_int_t mstride, magma_int_t nstride)
 
void magmablas_dtranspose_q (magma_int_t m, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dAT, magma_int_t lddat, magma_queue_t queue)
 dtranspose_q copies and transposes a matrix dA to matrix dAT. More...
 
void magmablas_dtranspose (magma_int_t m, magma_int_t n, magmaDouble_const_ptr dA, magma_int_t ldda, magmaDouble_ptr dAT, magma_int_t lddat)
 
void magmablas_dtranspose_batched_q (magma_int_t m, magma_int_t n, double **dA_array, magma_int_t ldda, double **dAT_array, magma_int_t lddat, magma_int_t batchCount, magma_queue_t queue)
 dtranspose_batched_q copies and transposes a matrix dA_array[i] to matrix dAT_array[i]. More...
 
void magmablas_dtranspose_batched (magma_int_t m, magma_int_t n, double **dA_array, magma_int_t ldda, double **dAT_array, magma_int_t lddat, magma_int_t batchCount)
 
void magmablas_dtranspose_inplace_q (magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_queue_t queue)
 dtranspose_inplace_q transposes a square N-by-N matrix in-place. More...
 
void magmablas_dtranspose_inplace (magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda)
 
void magmablas_slat2d_q (magma_uplo_t uplo, magma_int_t n, magmaFloat_const_ptr SA, magma_int_t ldsa, magmaDouble_ptr A, magma_int_t lda, magma_int_t *info, magma_queue_t queue)
 SLAT2D_STREAM converts a single-real matrix, SA, to a double-real matrix, A. More...
 
void magmablas_slat2d (magma_uplo_t uplo, magma_int_t n, magmaFloat_const_ptr SA, magma_int_t ldsa, magmaDouble_ptr A, magma_int_t lda, magma_int_t *info)
 

Detailed Description

Function Documentation

magma_int_t magma_dnan_inf ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
magma_int_t *  cnt_nan,
magma_int_t *  cnt_inf 
)

magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.

NAN is created by 0/0 and similar. INF is created by x/0 and similar, where x != 0.

Parameters
[in]uplomagma_uplo_t Specifies what part of the matrix A to check.
  • = MagmaUpper: Upper triangular part of A
  • = MagmaLower: Lower triangular part of A
  • = MagmaFull: All of A
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]ADOUBLE_PRECISION array, dimension (LDA,N), on the CPU host. The M-by-N matrix to be printed.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]cnt_nanINTEGER* If non-NULL, on exit contains the number of NAN values in A.
[out]cnt_infINTEGER* If non-NULL, on exit contains the number of INF values in A.
Returns
  • >= 0: Returns number of NAN + number of INF values.
  • < 0: If it returns -i, the i-th argument had an illegal value, or another error occured, such as memory allocation failed.
magma_int_t magma_dnan_inf_gpu ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magma_int_t *  cnt_nan,
magma_int_t *  cnt_inf 
)

magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.

NAN is created by 0/0 and similar. INF is created by x/0 and similar, where x != 0.

Parameters
[in]uplomagma_uplo_t Specifies what part of the matrix A to check.
  • = MagmaUpper: Upper triangular part of A
  • = MagmaLower: Lower triangular part of A
  • = MagmaFull: All of A
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N), on the GPU device. The M-by-N matrix to be printed.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]cnt_nanINTEGER* If non-NULL, on exit contains the number of NAN values in A.
[out]cnt_infINTEGER* If non-NULL, on exit contains the number of INF values in A.
Returns
  • >= 0: Returns number of NAN + number of INF values.
  • < 0: If it returns -i, the i-th argument had an illegal value, or another error occured, such as memory allocation failed.
void magma_dprint ( magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda 
)

magma_dprint prints a matrix that is located on the CPU host.

The output is intended to be Matlab compatible, to be useful in debugging.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]ADOUBLE_PRECISION array, dimension (LDA,N), on the CPU host. The M-by-N matrix to be printed.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
void magma_dprint_gpu ( magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda 
)

magma_dprint_gpu prints a matrix that is located on the GPU device.

Internally, it allocates CPU memory and copies the matrix to the CPU. The output is intended to be Matlab compatible, to be useful in debugging.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N), on the GPU device. The M-by-N matrix to be printed.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
void magmablas_dgeadd ( magma_int_t  m,
magma_int_t  n,
double  alpha,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb 
)
void magmablas_dgeadd_batched ( magma_int_t  m,
magma_int_t  n,
double  alpha,
magmaDouble_const_ptr const  dAarray[],
magma_int_t  ldda,
magmaDouble_ptr  dBarray[],
magma_int_t  lddb,
magma_int_t  batchCount 
)
void magmablas_dgeadd_batched_q ( magma_int_t  m,
magma_int_t  n,
double  alpha,
magmaDouble_const_ptr const  dAarray[],
magma_int_t  ldda,
magmaDouble_ptr  dBarray[],
magma_int_t  lddb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

ZGEADD adds two sets of matrices, dAarray[i] = alpha*dAarray[i] + dBarray[i], for i = 0, ..., batchCount-1.

Parameters
[in]mINTEGER The number of rows of each matrix dAarray[i]. M >= 0.
[in]nINTEGER The number of columns of each matrix dAarray[i]. N >= 0.
[in]alphaDOUBLE_PRECISION The scalar alpha.
[in]dAarrayarray on GPU, dimension(batchCount), of pointers to arrays, with each array a DOUBLE_PRECISION array, dimension (LDDA,N) The m by n matrices dAarray[i].
[in]lddaINTEGER The leading dimension of each array dAarray[i]. LDDA >= max(1,M).
[in,out]dBarrayarray on GPU, dimension(batchCount), of pointers to arrays, with each array a DOUBLE_PRECISION array, dimension (LDDB,N) The m by n matrices dBarray[i].
[in]lddbINTEGER The leading dimension of each array dBarray[i]. LDDB >= max(1,M).
[in]batchCountINTEGER The number of matrices to add; length of dAarray and dBarray. batchCount >= 0.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dgeadd_q ( magma_int_t  m,
magma_int_t  n,
double  alpha,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

ZGEADD adds two matrices, dB = alpha*dA + dB.

Parameters
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]alphaDOUBLE_PRECISION The scalar alpha.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The m by n matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in,out]dBDOUBLE_PRECISION array, dimension (LDDB,N) The m by n matrix dB.
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlacpy ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb 
)
void magmablas_dlacpy_batched ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr const  dAarray[],
magma_int_t  ldda,
magmaDouble_ptr  dBarray[],
magma_int_t  lddb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

DLACPY_BATCHED copies all or part of each two-dimensional matrix dAarray[i] to matrix dBarray[i], for 0 <= i < batchcount.

Parameters
[in]uplomagma_uplo_t Specifies the part of each matrix dA to be copied to dB.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of each matrix dA
[in]mINTEGER The number of rows of each matrix dA. M >= 0.
[in]nINTEGER The number of columns of each matrix dA. N >= 0.
[in]dAarrayDOUBLE_PRECISION* array, dimension (batchCount) Array of pointers to the matrices dA, where each dA is of dimension (LDDA,N). The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in]lddaINTEGER The leading dimension of each array dA. LDDA >= max(1,M).
[out]dBarrayDOUBLE_PRECISION* array, dimension (batchCount) Array of pointers to the matrices dB, where each dB is of dimension (LDDB,N). The M-by-N matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in]lddbINTEGER The leading dimension of each array dB. LDDB >= max(1,M).
[in]batchCountNumber of matrices in dAarray and dBarray.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlacpy_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

DLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB.

This is the same as DLACPY, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be copied to dB.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
  • = MagmaFull: All of the matrix dA
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[out]dBDOUBLE_PRECISION array, dimension (LDDB,N) The M-by-N matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlacpy_sym_in ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t *  rows,
magma_int_t *  perm,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb 
)
void magmablas_dlacpy_sym_in_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t *  rows,
magma_int_t *  perm,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

DLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB.

This is the same as DLACPY, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be copied to dB.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
  • = MagmaFull: All of the matrix dA
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[out]dBDOUBLE_PRECISION array, dimension (LDDB,N) The M-by-N matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlacpy_sym_out ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t *  rows,
magma_int_t *  perm,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb 
)
void magmablas_dlacpy_sym_out_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t *  rows,
magma_int_t *  perm,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

DLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB.

This is the same as DLACPY, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be copied to dB.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
  • = MagmaFull: All of the matrix dA
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[out]dBDOUBLE_PRECISION array, dimension (LDDB,N) The M-by-N matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlag2s ( magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  A,
magma_int_t  lda,
magmaFloat_ptr  SA,
magma_int_t  ldsa,
magma_int_t *  info 
)
void magmablas_dlag2s_q ( magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  A,
magma_int_t  lda,
magmaFloat_ptr  SA,
magma_int_t  ldsa,
magma_int_t *  info,
magma_queue_t  queue 
)

DLAG2S_Q converts a double-real matrix, A, to a single-real matrix, SA.

RMAX is the overflow for the single-real arithmetic. DLAG2S checks that all the entries of A are between -RMAX and RMAX. If not, the conversion is aborted and a flag is raised.

This is the same as DLAG2S, but adds queue argument.

Parameters
[in]mINTEGER The number of lines of the matrix A. m >= 0.
[in]nINTEGER The number of columns of the matrix A. n >= 0.
[in]ADOUBLE PRECISION array, dimension (LDA,n) On entry, the m-by-n coefficient matrix A.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,m).
[out]SASINGLE PRECISION array, dimension (LDSA,n) On exit, if INFO=0, the m-by-n coefficient matrix SA; if INFO > 0, the content of SA is unspecified.
[in]ldsaINTEGER The leading dimension of the array SA. LDSA >= max(1,m).
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • = 1: an entry of the matrix A is greater than the SINGLE PRECISION overflow threshold, in this case, the content of SA on exit is unspecified.
[in]queuemagma_queue_t Queue to execute in.
double magmablas_dlange ( magma_norm_t  norm,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dwork 
)

DLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.

Description

DLANGE returns the value

DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ** not yet supported

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters
[in]normCHARACTER*1 Specifies the value to be returned in DLANGE as described above.
[in]mINTEGER The number of rows of the matrix A. M >= 0. When M = 0, DLANGE is set to zero.
[in]nINTEGER The number of columns of the matrix A. N >= 0. When N = 0, DLANGE is set to zero.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The m by n matrix A.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(M,1).
dwork(workspace) DOUBLE PRECISION array on the GPU, dimension (LWORK).
double magmablas_dlansy ( magma_norm_t  norm,
magma_uplo_t  uplo,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dwork 
)

DLANSY returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A.

DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ** supported only for (PRECISION_s || PRECISION_d || PRECISION_c || CUDA_ARCH >= 200) ( ( normI(A), NORM = 'I' or 'i' ** supported only for (PRECISION_s || PRECISION_d || PRECISION_c || CUDA_ARCH >= 200) ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ** not yet supported

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

On error, returns DLANSY < 0: if DLANSY = -i, the i-th argument had an illegal value.

Arguments:

Parameters
[in]normCHARACTER*1 Specifies the value to be returned in DLANSY as described above.
[in]uplomagma_uplo_t Specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced.
  • = MagmaUpper: Upper triangular part of A is referenced
  • = MagmaLower: Lower triangular part of A is referenced
[in]nINTEGER The order of the matrix A. N >= 0. When N = 0, DLANSY is set to zero.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The symmetric matrix A. If UPLO = MagmaUpper, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(N,1).
dwork(workspace) DOUBLE PRECISION array on the GPU, dimension (MAX(1,LWORK)), where LWORK >= N. NOTE: this is different than LAPACK, where WORK is required only for norm1 and normI. Here max-norm also requires work.
void magmablas_dlascl ( magma_type_t  type,
magma_int_t  kl,
magma_int_t  ku,
double  cfrom,
double  cto,
magma_int_t  m,
magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_dlascl2 ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dD,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_dlascl2_q ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dD,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue,
magma_int_t *  info 
)

DLASCL2 scales the M by N real matrix A by the real diagonal matrix dD.

TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dDDOUBLE PRECISION vector, dimension (M) The diagonal matrix containing the scalar factors. Stored as a vector.
[in,out]dADOUBLE PRECISION array, dimension (LDDA,N) The matrix to be scaled by dD. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlascl_2x2 ( magma_type_t  type,
magma_int_t  m,
double *  dW,
magma_int_t  lddw,
double *  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_dlascl_2x2_q ( magma_type_t  type,
magma_int_t  m,
const double *  dW,
magma_int_t  lddw,
double *  dA,
magma_int_t  ldda,
magma_int_t *  info,
magma_queue_t  queue 
)

DLASCL_2x2 scales the M by M real matrix A by the 2-by-2 pivot.

TYPE specifies that A may be upper or lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]dWDOUBLE PRECISION vector, dimension (2*lddw) The matrix containing the 2-by-2 pivot.
[in]lddwINTEGER The leading dimension of the array W. LDDA >= max(1,M).
[in,out]dADOUBLE PRECISION array, dimension (LDDA,N) The matrix to be scaled by dW. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
void magmablas_dlascl_diag ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dD,
magma_int_t  lddd,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_dlascl_diag_q ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dD,
magma_int_t  lddd,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info,
magma_queue_t  queue 
)

DLASCL_DIAG scales the M by N real matrix A by the real diagonal matrix dD.

TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dDDOUBLE PRECISION vector, dimension (LDDD,M) The matrix storing the scaling factor on its diagonal.
[in]ldddINTEGER The leading dimension of the array D.
[in,out]dADOUBLE PRECISION array, dimension (LDDA,N) The matrix to be scaled by dD. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
void magmablas_dlascl_q ( magma_type_t  type,
magma_int_t  kl,
magma_int_t  ku,
double  cfrom,
double  cto,
magma_int_t  m,
magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue,
magma_int_t *  info 
)

DLASCL multiplies the M by N real matrix A by the real scalar CTO/CFROM.

This is done without over/underflow as long as the final result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]klINTEGER Unused, for LAPACK compatability.
[in]kuKU is INTEGER Unused, for LAPACK compatability.
[in]cfromDOUBLE PRECISION
[in]ctoDOUBLE PRECISION
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed without over/underflow if the final result CTO*A(I,J)/CFROM can be represented without over/underflow. CFROM must be nonzero. CFROM and CTO must not be NAN.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dADOUBLE PRECISION array, dimension (LDDA,N) The matrix to be multiplied by CTO/CFROM. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlaset ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
double  offdiag,
double  diag,
magmaDouble_ptr  dA,
magma_int_t  ldda 
)
void magmablas_dlaset_band ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t  k,
double  offdiag,
double  diag,
magmaDouble_ptr  dA,
magma_int_t  ldda 
)
void magmablas_dlaset_band_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t  k,
double  offdiag,
double  diag,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

DLASET_BAND_STREAM initializes the main diagonal of dA to DIAG, and the K-1 sub- or super-diagonals to OFFDIAG.

This is the same as DLASET_BAND, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be set.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]kINTEGER The number of diagonals to set, including the main diagonal. K >= 0. Currently, K <= 1024 due to CUDA restrictions (max. number of threads per block).
[in]offdiagDOUBLE_PRECISION Off-diagonal elements in the band are set to OFFDIAG.
[in]diagDOUBLE_PRECISION All the main diagonal elements are set to DIAG.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed. On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n where i != j, abs(i-j) < k; and A(i,i) = BETA, 1 <= i <= min(m,n)
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in]queuemagma_queue_t Stream to execute DLASET in.
void magmablas_dlaset_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
double  offdiag,
double  diag,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

DLASET_Q initializes a 2-D array A to DIAG on the diagonal and OFFDIAG on the off-diagonals.

This is the same as DLASET, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be set.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
  • = MagmaFull: All of the matrix dA
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]offdiagDOUBLE_PRECISION The scalar OFFDIAG. (In LAPACK this is called ALPHA.)
[in]diagDOUBLE_PRECISION The scalar DIAG. (In LAPACK this is called BETA.)
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed. On exit, A(i,j) = OFFDIAG, 1 <= i <= m, 1 <= j <= n, i != j; and A(i,i) = DIAG, 1 <= i <= min(m,n)
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlaswp ( magma_int_t  n,
magmaDouble_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_dlaswp2 ( magma_int_t  n,
magmaDouble_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
magmaInt_const_ptr  d_ipiv,
magma_int_t  inci 
)
void magmablas_dlaswp2_q ( magma_int_t  n,
magmaDouble_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
magmaInt_const_ptr  d_ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

DLASWP2 performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored row-wise (hence dAT). ** Otherwise, this is identical to LAPACK's interface.

Here, d_ipiv is passed in GPU memory.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dATDOUBLE PRECISION array on GPU, stored row-wise, dimension (LDDA,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]lddaINTEGER The leading dimension of the array A. (I.e., stride between elements in a column.)
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in]d_ipivINTEGER array, on GPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlaswp_q ( magma_int_t  n,
magmaDouble_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

DLASWP performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored row-wise (hence dAT). ** Otherwise, this is identical to LAPACK's interface.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dATDOUBLE PRECISION array on GPU, stored row-wise, dimension (LDDA,N) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]lddaINTEGER The leading dimension of the array A. ldda >= n.
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (Fortran one-based index: 1 <= k1 .)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (Fortran one-based index: 1 <= k2 .)
[in]ipivINTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, INCI > 0. TODO: If INCI is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlaswp_sym ( magma_int_t  n,
double *  dA,
magma_int_t  lda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_dlaswp_sym_q ( magma_int_t  n,
double *  dA,
magma_int_t  lda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

DLASWPX performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored either row-wise or column-wise, depending on ldx and ldy. ** Otherwise, this is identical to LAPACK's interface.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dADOUBLE PRECISION array on GPU, dimension (*,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]ldxINTEGER Stride between elements in same column.
[in]ldyINTEGER Stride between elements in same row. For A stored row-wise, set ldx=lda and ldy=1. For A stored column-wise, set ldx=1 and ldy=lda.
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in]ipivINTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlaswpx ( magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldx,
magma_int_t  ldy,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_dlaswpx_q ( magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldx,
magma_int_t  ldy,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

DLASWPX performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored either row-wise or column-wise, depending on ldx and ldy. ** Otherwise, this is identical to LAPACK's interface.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dADOUBLE PRECISION array on GPU, dimension (*,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]ldxINTEGER Stride between elements in same column.
[in]ldyINTEGER Stride between elements in same row. For A stored row-wise, set ldx=ldda and ldy=1. For A stored column-wise, set ldx=1 and ldy=ldda.
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in]ipivINTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dlat2s ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDouble_const_ptr  A,
magma_int_t  lda,
magmaFloat_ptr  SA,
magma_int_t  ldsa,
magma_int_t *  info 
)
void magmablas_dlat2s_q ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDouble_const_ptr  A,
magma_int_t  lda,
magmaFloat_ptr  SA,
magma_int_t  ldsa,
magma_int_t *  info,
magma_queue_t  queue 
)

DLAT2S converts a double-real matrix, A, to a single-real matrix, SA.

RMAX is the overflow for the single-real arithmetic. DLAT2S checks that all the entries of A are between -RMAX and RMAX. If not, the conversion is aborted and a flag is raised.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix A to be converted.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]nINTEGER The number of columns of the matrix A. n >= 0.
[in]ADOUBLE PRECISION array, dimension (LDA,n) On entry, the n-by-n coefficient matrix A.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,n).
[out]SASINGLE PRECISION array, dimension (LDSA,n) On exit, if INFO=0, the n-by-n coefficient matrix SA; if INFO > 0, the content of SA is unspecified.
[in]ldsaINTEGER The leading dimension of the array SA. LDSA >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • = 1: an entry of the matrix A is greater than the SINGLE PRECISION overflow threshold, in this case, the content of SA on exit is unspecified.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dslaswp ( magma_int_t  n,
magmaDouble_ptr  A,
magma_int_t  lda,
magmaFloat_ptr  SA,
magma_int_t  m,
const magma_int_t *  ipiv,
magma_int_t  incx 
)
void magmablas_dslaswp_q ( magma_int_t  n,
magmaDouble_ptr  A,
magma_int_t  lda,
magmaFloat_ptr  SA,
magma_int_t  m,
const magma_int_t *  ipiv,
magma_int_t  incx,
magma_queue_t  queue 
)

Row i of A is cast to single precision in row ipiv[i] of SA (incx > 0), or row i of SA is cast to double precision in row ipiv[i] of A (incx < 0), for 0 <= i < M.

Parameters
[in]nINTEGER. On entry, N specifies the number of columns of the matrix A.
[in,out]ADOUBLE PRECISION array on the GPU, dimension (LDA,N) On entry, the M-by-N matrix to which the row interchanges will be applied. TODO update docs
[in]ldaINTEGER. LDA specifies the leading dimension of A.
[in,out]SAREAL array on the GPU, dimension (LDA,N) On exit, the single precision, permuted matrix. TODO update docs
[in]mThe number of rows to be interchanged.
[in]ipivINTEGER array on the GPU, dimension (M) The vector of pivot indices. Row i of A is cast to single precision in row ipiv[i] of SA, for 0 <= i < m.
[in]incxINTEGER If INCX is negative, the pivots are applied in reverse order, otherwise in straight-forward order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dswapdblk ( magma_int_t  n,
magma_int_t  nb,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t  inca,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_int_t  incb 
)
void magmablas_dswapdblk_batched ( magma_int_t  n,
magma_int_t  nb,
double **  dA_array,
magma_int_t  ldda,
magma_int_t  inca,
double **  dB_array,
magma_int_t  lddb,
magma_int_t  incb,
magma_int_t  batchCount 
)
void magmablas_dswapdblk_batched_q ( magma_int_t  n,
magma_int_t  nb,
double **  dA_array,
magma_int_t  ldda,
magma_int_t  inca,
double **  dB_array,
magma_int_t  lddb,
magma_int_t  incb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

dswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU.

It swaps nblocks = ceil(n/nb) blocks. For i = 1 .. nblocks, submatrices dA( i*nb*inca, i*nb ) and dB( i*nb*incb, i*nb ) are swapped.

Parameters
[in]nINTEGER The number of columns of the matrices dA and dB. N >= 0.
[in]nbINTEGER The size of diagonal blocks. NB > 0 and NB <= maximum threads per CUDA block (512 or 1024).
[in,out]dADOUBLE_PRECISION array, dimension (LDDA,N) The matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= (nblocks - 1)*nb*inca + nb.
[in]incaINTEGER The row increment between diagonal blocks of dA. inca >= 0. For example, inca = 1 means blocks are stored on the diagonal at dA(i*nb, i*nb), inca = 0 means blocks are stored side-by-side at dA(0, i*nb).
[in,out]dBDOUBLE_PRECISION array, dimension (LDDB,N) The matrix dB.
[in]lddbINTEGER The leading dimension of the array db. LDDB >= (nblocks - 1)*nb*incb + nb.
[in]incbINTEGER The row increment between diagonal blocks of dB. incb >= 0. See inca.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dswapdblk_q ( magma_int_t  n,
magma_int_t  nb,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t  inca,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_int_t  incb,
magma_queue_t  queue 
)

dswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU.

It swaps nblocks = n/nb blocks. For i = 1 .. nblocks, submatrices dA( i*nb*inca, i*nb ) and dB( i*nb*incb, i*nb ) are swapped.

Parameters
[in]nINTEGER The number of columns of the matrices dA and dB. N >= 0.
[in]nbINTEGER The size of diagonal blocks. NB > 0 and NB <= maximum threads per CUDA block (512 or 1024).
[in,out]dADOUBLE_PRECISION array, dimension (LDDA,N) The matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= (nblocks - 1)*nb*inca + nb.
[in]incaINTEGER The row increment between diagonal blocks of dA. inca >= 0. For example, inca = 1 means blocks are stored on the diagonal at dA(i*nb, i*nb), inca = 0 means blocks are stored side-by-side at dA(0, i*nb).
[in,out]dBDOUBLE_PRECISION array, dimension (LDDB,N) The matrix dB.
[in]lddbINTEGER The leading dimension of the array db. LDDB >= (nblocks - 1)*nb*incb + nb.
[in]incbINTEGER The row increment between diagonal blocks of dB. incb >= 0. See inca.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dsymmetrize ( magma_uplo_t  uplo,
magma_int_t  m,
magmaDouble_ptr  dA,
magma_int_t  ldda 
)
void magmablas_dsymmetrize_q ( magma_uplo_t  uplo,
magma_int_t  m,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

DSYMMETRIZE copies lower triangle to upper triangle, or vice-versa, to make dA a general representation of a symmetric matrix.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA that is valid on input.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in,out]dADOUBLE_PRECISION array, dimension (LDDA,N) The m by m matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dsymmetrize_tiles ( magma_uplo_t  uplo,
magma_int_t  m,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t  ntile,
magma_int_t  mstride,
magma_int_t  nstride 
)
void magmablas_dsymmetrize_tiles_q ( magma_uplo_t  uplo,
magma_int_t  m,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t  ntile,
magma_int_t  mstride,
magma_int_t  nstride,
magma_queue_t  queue 
)

DSYMMETRIZE_TILES copies lower triangle to upper triangle, or vice-versa, to make some blocks of dA into general representations of a symmetric block.

This processes NTILE blocks, typically the diagonal blocks. Each block is offset by mstride rows and nstride columns from the previous block.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA that is valid on input.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]mINTEGER The number of rows & columns of each square block of dA. M >= 0.
[in,out]dADOUBLE_PRECISION array, dimension (LDDA,N) The matrix dA. N = m + nstride*(ntile-1).
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1, m + mstride*(ntile-1)).
[in]ntileINTEGER Number of blocks to symmetrize. ntile >= 0.
[in]mstrideINTEGER Row offset from start of one block to start of next block. mstride >= 0. Either (mstride >= m) or (nstride >= m), to prevent m-by-m tiles from overlapping.
[in]nstrideINTEGER Column offset from start of one block to start of next block. nstride >= 0.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dtranspose ( magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dAT,
magma_int_t  lddat 
)
void magmablas_dtranspose_batched ( magma_int_t  m,
magma_int_t  n,
double **  dA_array,
magma_int_t  ldda,
double **  dAT_array,
magma_int_t  lddat,
magma_int_t  batchCount 
)
void magmablas_dtranspose_batched_q ( magma_int_t  m,
magma_int_t  n,
double **  dA_array,
magma_int_t  ldda,
double **  dAT_array,
magma_int_t  lddat,
magma_int_t  batchCount,
magma_queue_t  queue 
)

dtranspose_batched_q copies and transposes a matrix dA_array[i] to matrix dAT_array[i].

Same as dtranspose_batched, but adds queue argument.

Parameters
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dA_arrayDOUBLE_PRECISION* array, dimension (batchCount) array of pointers to the matrices dA, where each dA is of dimension (LDDA,N) The M-by-N matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= M.
[in]dAT_arrayDOUBLE_PRECISION* array, dimension (batchCount) array of pointers to the matrices dAT, where each dAT is of dimension (LDDAT,M) The N-by-M matrix dAT.
[in]lddatINTEGER The leading dimension of the array dAT. LDDAT >= N.
[in]queuemagma_queue_t Queue to execute in.
[in]batchCountNumber of matrices in dA_array and dAT_array
void magmablas_dtranspose_inplace ( magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldda 
)
void magmablas_dtranspose_inplace_q ( magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

dtranspose_inplace_q transposes a square N-by-N matrix in-place.

Same as dtranspose_inplace, but adds queue argument.

Parameters
[in]nINTEGER The number of rows & columns of the matrix dA. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The N-by-N matrix dA. On exit, dA(j,i) = dA_original(i,j), for 0 <= i,j < N.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= N.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_dtranspose_q ( magma_int_t  m,
magma_int_t  n,
magmaDouble_const_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dAT,
magma_int_t  lddat,
magma_queue_t  queue 
)

dtranspose_q copies and transposes a matrix dA to matrix dAT.

Same as dtranspose, but adds queue argument.

Parameters
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dADOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= M.
[in]dATDOUBLE_PRECISION array, dimension (LDDAT,M) The N-by-M matrix dAT.
[in]lddatINTEGER The leading dimension of the array dAT. LDDAT >= N.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slat2d ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloat_const_ptr  SA,
magma_int_t  ldsa,
magmaDouble_ptr  A,
magma_int_t  lda,
magma_int_t *  info 
)
void magmablas_slat2d_q ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloat_const_ptr  SA,
magma_int_t  ldsa,
magmaDouble_ptr  A,
magma_int_t  lda,
magma_int_t *  info,
magma_queue_t  queue 
)

SLAT2D_STREAM converts a single-real matrix, SA, to a double-real matrix, A.

Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix A to be converted.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]nINTEGER The number of columns of the matrix A. n >= 0.
[in]ADOUBLE PRECISION array, dimension (LDA,n) On entry, the n-by-n coefficient matrix A.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,n).
[out]SASINGLE PRECISION array, dimension (LDSA,n) On exit, if INFO=0, the n-by-n coefficient matrix SA; if INFO > 0, the content of SA is unspecified.
[in]ldsaINTEGER The leading dimension of the array SA. LDSA >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in]queuemagma_queue_t Queue to execute in.