Functions | |
magma_int_t | magma_zgetf2_nopiv (magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info) |
ZGETF2_NOPIV computes an LU factorization of a general m-by-n matrix A without pivoting. | |
magma_int_t | magma_ztrtri (magma_uplo_t uplo, magma_diag_t diag, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info) |
ZTRTRI computes the inverse of a real upper or lower triangular matrix A. | |
magma_int_t | magma_ztrtri_gpu (magma_uplo_t uplo, magma_diag_t diag, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *info) |
ZTRTRI computes the inverse of a real upper or lower triangular matrix dA. | |
magma_int_t | magma_zgetf2_gpu (magma_int_t m, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *ipiv, magma_int_t *info) |
ZGETF2 computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges. |
magma_int_t magma_zgetf2_gpu | ( | magma_int_t | m, | |
magma_int_t | n, | |||
magmaDoubleComplex_ptr | dA, | |||
magma_int_t | ldda, | |||
magma_int_t * | ipiv, | |||
magma_int_t * | info | |||
) |
ZGETF2 computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges.
The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
[in] | m | INTEGER The number of rows of the matrix A. M >= 0. |
[in] | n | INTEGER The number of columns of the matrix A. N >= 0 and N <= 1024. On CUDA architecture 1.x cards, N <= 512. |
[in,out] | dA | COMPLEX_16 array, dimension (LDDA,N) On entry, the m by n matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,M). |
[out] | ipiv | INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). |
[out] | info | INTEGER
|
magma_int_t magma_zgetf2_nopiv | ( | magma_int_t | m, | |
magma_int_t | n, | |||
magmaDoubleComplex * | A, | |||
magma_int_t | lda, | |||
magma_int_t * | info | |||
) |
ZGETF2_NOPIV computes an LU factorization of a general m-by-n matrix A without pivoting.
The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking Level 2 BLAS version of the algorithm.
[in] | m | INTEGER The number of rows of the matrix A. M >= 0. |
[in] | n | INTEGER The number of columns of the matrix A. N >= 0. |
[in,out] | A | COMPLEX_16 array, dimension (LDA,N) On entry, the m by n matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | info | INTEGER
|
magma_int_t magma_ztrtri | ( | magma_uplo_t | uplo, | |
magma_diag_t | diag, | |||
magma_int_t | n, | |||
magmaDoubleComplex * | A, | |||
magma_int_t | lda, | |||
magma_int_t * | info | |||
) |
ZTRTRI computes the inverse of a real upper or lower triangular matrix A.
This is the Level 3 BLAS version of the algorithm.
[in] | uplo | magma_uplo_t
|
[in] | diag | magma_diag_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | COMPLEX_16 array, dimension (LDA,N) On entry, the triangular matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = MagmaUnit, the diagonal elements of A are also not referenced and are assumed to be 1. On exit, the (triangular) inverse of the original matrix, in the same storage format. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_ztrtri_gpu | ( | magma_uplo_t | uplo, | |
magma_diag_t | diag, | |||
magma_int_t | n, | |||
magmaDoubleComplex_ptr | dA, | |||
magma_int_t | ldda, | |||
magma_int_t * | info | |||
) |
ZTRTRI computes the inverse of a real upper or lower triangular matrix dA.
This is the Level 3 BLAS version of the algorithm.
[in] | uplo | magma_uplo_t
|
[in] | diag | magma_diag_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in,out] | dA | COMPLEX_16 array ON THE GPU, dimension (LDDA,N) On entry, the triangular matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of the array dA contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of the array dA contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = MagmaUnit, the diagonal elements of A are also not referenced and are assumed to be 1. On exit, the (triangular) inverse of the original matrix, in the same storage format. |
[in] | ldda | INTEGER The leading dimension of the array dA. LDDA >= max(1,N). |
[out] | info | INTEGER
|