single precision
[QR factorization: auxiliary]

Functions

magma_int_t magma_sgeqr2_gpu (magma_int_t m, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dtau, magmaFloat_ptr dwork, magma_int_t *info)
 SGEQR2 computes a QR factorization of a real m by n matrix A: A = Q * R using the non-blocking Householder QR.

Function Documentation

magma_int_t magma_sgeqr2_gpu ( magma_int_t  m,
magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dtau,
magmaFloat_ptr  dwork,
magma_int_t *  info 
)

SGEQR2 computes a QR factorization of a real m by n matrix A: A = Q * R using the non-blocking Householder QR.

Parameters:
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in,out] dA REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details).
[in] ldda INTEGER The leading dimension of the array A. LDA >= max(1,M).
[out] dtau REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
dwork (workspace) DOUBLE_PRECISION array, dimension (N)
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

Further Details --------------- The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v**H

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).


Generated on 3 May 2015 for MAGMA by  doxygen 1.6.1