double-complex precision

Functions

magma_int_t magma_zlauum (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info)
 ZLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A.
magma_int_t magma_zlauum_gpu (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 ZLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array dA.
magma_int_t magma_zpotf2_gpu (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 zpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A.
void zlacgv (magma_int_t n, magmaDoubleComplex *x, magma_int_t incx)
 ZLACGV conjugates a complex vector of length N.
magma_int_t magma_zpotf2_tile_batched (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaDoubleComplex **dA_array, magma_int_t lda, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue)
 zpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A.

Function Documentation

magma_int_t magma_zlauum ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDoubleComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

ZLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A.

If UPLO = MagmaUpper then the upper triangle of the result is stored, overwriting the factor U in A. If UPLO = MagmaLower then the lower triangle of the result is stored, overwriting the factor L in A. This is the blocked form of the algorithm, calling Level 3 BLAS.

Parameters:
[in] uplo magma_uplo_t Specifies whether the triangular factor stored in the array A is upper or lower triangular:

  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in] n INTEGER The order of the triangular factor U or L. N >= 0.
[in,out] A COPLEX_16 array, dimension (LDA,N) On entry, the triangular factor U or L. On exit, if UPLO = MagmaUpper, the upper triangle of A is overwritten with the upper triangle of the product U * U'; if UPLO = MagmaLower, the lower triangle of A is overwritten with the lower triangle of the product L' * L.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N).
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
magma_int_t magma_zlauum_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDoubleComplex_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

ZLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array dA.

If UPLO = MagmaUpper then the upper triangle of the result is stored, overwriting the factor U in dA. If UPLO = MagmaLower then the lower triangle of the result is stored, overwriting the factor L in dA. This is the blocked form of the algorithm, calling Level 3 BLAS.

Parameters:
[in] uplo magma_uplo_t Specifies whether the triangular factor stored in the array dA is upper or lower triangular:

  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in] n INTEGER The order of the triangular factor U or L. N >= 0.
[in,out] dA DOUBLE PRECISION array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L. On exit, if UPLO = MagmaUpper, the upper triangle of dA is overwritten with the upper triangle of the product U * U'; if UPLO = MagmaLower, the lower triangle of dA is overwritten with the lower triangle of the product L' * L.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,N).
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
magma_int_t magma_zpotf2_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDoubleComplex_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

zpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A.

The factorization has the form A = U**H * U, if UPLO = MagmaUpper, or A = L * L**H, if UPLO = MagmaLower, where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters:
[in] uplo magma_uplo_t Specifies whether the upper or lower triangular part of the symmetric matrix A is stored.

  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in] n INTEGER The order of the matrix A. N >= 0 and N <= 512.
[in,out] dA COMPLEX_16 array, dimension (LDDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H * U or A = L * L**H.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,N).
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
  • > 0: if INFO = k, the leading minor of order k is not positive definite, and the factorization could not be completed.
magma_int_t magma_zpotf2_tile_batched ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaDoubleComplex **  dA_array,
magma_int_t  lda,
magma_int_t *  info_array,
magma_int_t  gbstep,
magma_int_t  batchCount,
magma_queue_t  queue 
)

zpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A.

The factorization has the form A = U**H * U, if UPLO = MagmaUpper, or A = L * L**H, if UPLO = MagmaLower, where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters:
[in] uplo magma_uplo_t Specifies whether the upper or lower triangular part of the symmetric matrix A is stored.

  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in] n INTEGER The order of the matrix A. N >= 0 and N <= 512.
[in,out] dA COMPLEX_16 array, dimension (LDDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H * U or A = L * L**H.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,N).
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
  • > 0: if INFO = k, the leading minor of order k is not positive definite, and the factorization could not be completed.
void zlacgv ( magma_int_t  n,
magmaDoubleComplex *  x,
magma_int_t  incx 
)

ZLACGV conjugates a complex vector of length N.

Parameters:
[in] n INTEGER The length of the vector X. N >= 0.
[in,out] x COMPLEX*16 array, dimension (1+(N-1)*abs(INCX)) On entry, the vector of length N to be conjugated. On exit, X is overwritten with conjg(X).
[in] incx INTEGER The spacing between successive elements of X.

Generated on 3 May 2015 for MAGMA by  doxygen 1.6.1