double precision
[Sparse BLAS]

Functions

magma_int_t magma_dcuspaxpy (double *alpha, magma_d_matrix A, double *beta, magma_d_matrix B, magma_d_matrix *AB, magma_queue_t queue)
 This is an interface to the cuSPARSE routine csrgeam computing the sum of two sparse matrices stored in csr format:.
magma_int_t magma_dcuspmm (magma_d_matrix A, magma_d_matrix B, magma_d_matrix *AB, magma_queue_t queue)
 This is an interface to the cuSPARSE routine csrmm computing the product of two sparse matrices stored in csr format.
magma_int_t magma_dcustomspmv (double alpha, magma_d_matrix x, double beta, magma_d_matrix y, magma_queue_t queue)
 This is an interface to any custom sparse matrix vector product.
magma_int_t magma_dgecsrmv (magma_trans_t transA, magma_int_t m, magma_int_t n, double alpha, magmaDouble_ptr dval, magmaIndex_ptr drowptr, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha * A * x + beta * y on the GPU.
magma_int_t magma_dgecsrmv_shift (magma_trans_t transA, magma_int_t m, magma_int_t n, double alpha, double lambda, magmaDouble_ptr dval, magmaIndex_ptr drowptr, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, int offset, int blocksize, magma_index_t *addrows, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha * ( A -lambda I ) * x + beta * y on the GPU.
magma_int_t magma_dgeellmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha * A * x + beta * y on the GPU.
magma_int_t magma_dgeellmv_shift (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, double alpha, double lambda, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, int offset, int blocksize, magmaIndex_ptr addrows, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha *( A - lambda I ) * x + beta * y on the GPU.
magma_int_t magma_dgeellrtmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaIndex_ptr drowlength, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_int_t alignment, magma_int_t blocksize, magma_queue_t queue)
 This routine computes y = alpha * A * x + beta * y on the GPU.
magma_int_t magma_dgeelltmv_shift (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, double alpha, double lambda, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, int offset, int blocksize, magmaIndex_ptr addrows, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha *( A - lambda I ) * x + beta * y on the GPU.
magma_int_t magma_dgesellpmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t blocksize, magma_int_t slices, magma_int_t alignment, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaIndex_ptr drowptr, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha * A^t * x + beta * y on the GPU.
magma_int_t magma_dgesellcmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t blocksize, magma_int_t slices, magma_int_t alignment, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaIndex_ptr drowptr, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes y = alpha * A^t * x + beta * y on the GPU.
magma_int_t magma_dmdotc (int n, int k, magmaDouble_ptr v, magmaDouble_ptr r, magmaDouble_ptr d1, magmaDouble_ptr d2, magmaDouble_ptr skp, magma_queue_t queue)
 Computes the scalar product of a set of vectors v_i such that.
magma_int_t magma_dmgecsrmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t num_vecs, double alpha, magmaDouble_ptr dval, magmaIndex_ptr drowptr, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes Y = alpha * A * X + beta * Y for X and Y sets of num_vec vectors on the GPU.
magma_int_t magma_dmgeellmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t num_vecs, magma_int_t nnz_per_row, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes Y = alpha * A * X + beta * Y for X and Y sets of num_vec vectors on the GPU.
magma_int_t magma_dmgeelltmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t num_vecs, magma_int_t nnz_per_row, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes Y = alpha * A * X + beta * Y for X and Y sets of num_vec vectors on the GPU.
magma_int_t magma_dmgesellpmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t num_vecs, magma_int_t blocksize, magma_int_t slices, magma_int_t alignment, double alpha, magmaDouble_ptr dval, magmaIndex_ptr dcolind, magmaIndex_ptr drowptr, magmaDouble_ptr dx, double beta, magmaDouble_ptr dy, magma_queue_t queue)
 This routine computes Y = alpha * A^t * X + beta * Y on the GPU.

Function Documentation

magma_int_t magma_dcuspaxpy ( double *  alpha,
magma_d_matrix  A,
double *  beta,
magma_d_matrix  B,
magma_d_matrix *  AB,
magma_queue_t  queue 
)

This is an interface to the cuSPARSE routine csrgeam computing the sum of two sparse matrices stored in csr format:.

C = alpha * A + beta * B

Parameters:
[in] alpha double* scalar
[in] A magma_d_matrix input matrix
[in] beta double* scalar
[in] B magma_d_matrix input matrix
[out] AB magma_d_matrix* output matrix AB = alpha * A + beta * B
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dcuspmm ( magma_d_matrix  A,
magma_d_matrix  B,
magma_d_matrix *  AB,
magma_queue_t  queue 
)

This is an interface to the cuSPARSE routine csrmm computing the product of two sparse matrices stored in csr format.

Parameters:
[in] A magma_d_matrix input matrix
[in] B magma_d_matrix input matrix
[out] AB magma_d_matrix* output matrix AB = A * B
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dcustomspmv ( double  alpha,
magma_d_matrix  x,
double  beta,
magma_d_matrix  y,
magma_queue_t  queue 
)

This is an interface to any custom sparse matrix vector product.

It should compute y = alpha*FUNCTION(x) + beta*y The vectors are located on the device, the scalars on the CPU.

Parameters:
[in] alpha double scalar alpha
[in] x magma_d_matrix input vector x
[in] beta double scalar beta
[out] y magma_d_matrix output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgecsrmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  drowptr,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha * A * x + beta * y on the GPU.

The input format is CSR (val, row, col).

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in CSR
[in] drowptr magmaIndex_ptr rowpointer of A in CSR
[in] dcolind magmaIndex_ptr columnindices of A in CSR
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgecsrmv_shift ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
double  alpha,
double  lambda,
magmaDouble_ptr  dval,
magmaIndex_ptr  drowptr,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
int  offset,
int  blocksize,
magma_index_t *  addrows,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha * ( A -lambda I ) * x + beta * y on the GPU.

It is a shifted version of the CSR-SpMV.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] alpha double scalar multiplier
[in] lambda double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in CSR
[in] drowptr magmaIndex_ptr rowpointer of A in CSR
[in] dcolind magmaIndex_ptr columnindices of A in CSR
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[in] offset magma_int_t in case not the main diagonal is scaled
[in] blocksize magma_int_t in case of processing multiple vectors
[in] addrows magmaIndex_ptr in case the matrixpowerskernel is used
[out] dy magmaDouble_ptr output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgeellmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  nnz_per_row,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha * A * x + beta * y on the GPU.

Input format is ELLPACK.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] nnz_per_row magma_int_t number of elements in the longest row
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in ELLPACK
[in] dcolind magmaIndex_ptr columnindices of A in ELLPACK
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgeellmv_shift ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  nnz_per_row,
double  alpha,
double  lambda,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
int  offset,
int  blocksize,
magmaIndex_ptr  addrows,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha *( A - lambda I ) * x + beta * y on the GPU.

Input format is ELLPACK. It is the shifted version of the ELLPACK SpMV.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] nnz_per_row magma_int_t number of elements in the longest row
[in] alpha double scalar multiplier
[in] lambda double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in ELLPACK
[in] dcolind magmaIndex_ptr columnindices of A in ELLPACK
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[in] offset magma_int_t in case not the main diagonal is scaled
[in] blocksize magma_int_t in case of processing multiple vectors
[in] addrows magmaIndex_ptr in case the matrixpowerskernel is used
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgeellrtmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  nnz_per_row,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaIndex_ptr  drowlength,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_int_t  alignment,
magma_int_t  blocksize,
magma_queue_t  queue 
)

This routine computes y = alpha * A * x + beta * y on the GPU.

Input format is ELLRT. The ideas are taken from "Improving the performance of the sparse matrix vector product with GPUs", (CIT 2010), and modified to provide correct values.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows
[in] n magma_int_t number of columns
[in] nnz_per_row magma_int_t max number of nonzeros in a row
[in] alpha double scalar alpha
[in] dval magmaDouble_ptr val array
[in] dcolind magmaIndex_ptr col indices
[in] drowlength magmaIndex_ptr number of elements in each row
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar beta
[out] dy magmaDouble_ptr output vector y
[in] blocksize magma_int_t threads per block
[in] alignment magma_int_t threads assigned to each row
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgeelltmv_shift ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  nnz_per_row,
double  alpha,
double  lambda,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
int  offset,
int  blocksize,
magmaIndex_ptr  addrows,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha *( A - lambda I ) * x + beta * y on the GPU.

Input format is ELL.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] nnz_per_row magma_int_t number of elements in the longest row
[in] alpha double scalar multiplier
[in] lambda double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in ELL
[in] dcolind magmaIndex_ptr columnindices of A in ELL
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[in] offset magma_int_t in case not the main diagonal is scaled
[in] blocksize magma_int_t in case of processing multiple vectors
[in] addrows magmaIndex_ptr in case the matrixpowerskernel is used
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgesellcmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  blocksize,
magma_int_t  slices,
magma_int_t  alignment,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaIndex_ptr  drowptr,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha * A^t * x + beta * y on the GPU.

Input format is SELLC/SELLP.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] blocksize magma_int_t number of rows in one ELL-slice
[in] slices magma_int_t number of slices in matrix
[in] alignment magma_int_t number of threads assigned to one row (=1)
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in SELLC/P
[in] dcolind magmaIndex_ptr columnindices of A in SELLC/P
[in] drowptr magmaIndex_ptr rowpointer of SELLP
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dgesellpmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  blocksize,
magma_int_t  slices,
magma_int_t  alignment,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaIndex_ptr  drowptr,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes y = alpha * A^t * x + beta * y on the GPU.

Input format is SELLP.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] blocksize magma_int_t number of rows in one ELL-slice
[in] slices magma_int_t number of slices in matrix
[in] alignment magma_int_t number of threads assigned to one row
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in SELLP
[in] dcolind magmaIndex_ptr columnindices of A in SELLP
[in] drowptr magmaIndex_ptr rowpointer of SELLP
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dmdotc ( int  n,
int  k,
magmaDouble_ptr  v,
magmaDouble_ptr  r,
magmaDouble_ptr  d1,
magmaDouble_ptr  d2,
magmaDouble_ptr  skp,
magma_queue_t  queue 
)

Computes the scalar product of a set of vectors v_i such that.

skp = ( <v_0,r>, <v_1,r>, .. )

Returns the vector skp.

Parameters:
[in] n int length of v_i and r
[in] k int # vectors v_i
[in] v magmaDouble_ptr v = (v_0 .. v_i.. v_k)
[in] r magmaDouble_ptr r
[in] d1 magmaDouble_ptr workspace
[in] d2 magmaDouble_ptr workspace
[out] skp magmaDouble_ptr vector[k] of scalar products (<v_i,r>...)
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dmgecsrmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  num_vecs,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  drowptr,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes Y = alpha * A * X + beta * Y for X and Y sets of num_vec vectors on the GPU.

Input format is CSR.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] num_vecs mama_int_t number of vectors
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in CSR
[in] drowptr magmaIndex_ptr rowpointer of A in CSR
[in] dcolind magmaIndex_ptr columnindices of A in CSR
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dmgeellmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  num_vecs,
magma_int_t  nnz_per_row,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes Y = alpha * A * X + beta * Y for X and Y sets of num_vec vectors on the GPU.

Input format is ELLPACK.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] num_vecs mama_int_t number of vectors
[in] nnz_per_row magma_int_t number of elements in the longest row
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in ELLPACK
[in] dcolind magmaIndex_ptr columnindices of A in ELLPACK
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dmgeelltmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  num_vecs,
magma_int_t  nnz_per_row,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes Y = alpha * A * X + beta * Y for X and Y sets of num_vec vectors on the GPU.

Input format is ELL.

Parameters:
[in] transA magma_trans_t transposition parameter for A
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] num_vecs mama_int_t number of vectors
[in] nnz_per_row magma_int_t number of elements in the longest row
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in ELL
[in] dcolind magmaIndex_ptr columnindices of A in ELL
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.
magma_int_t magma_dmgesellpmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  num_vecs,
magma_int_t  blocksize,
magma_int_t  slices,
magma_int_t  alignment,
double  alpha,
magmaDouble_ptr  dval,
magmaIndex_ptr  dcolind,
magmaIndex_ptr  drowptr,
magmaDouble_ptr  dx,
double  beta,
magmaDouble_ptr  dy,
magma_queue_t  queue 
)

This routine computes Y = alpha * A^t * X + beta * Y on the GPU.

Input format is SELLP. Note, that the input format for X is row-major while the output format for Y is column major!

Parameters:
[in] transA magma_trans_t transpose A?
[in] m magma_int_t number of rows in A
[in] n magma_int_t number of columns in A
[in] num_vecs magma_int_t number of columns in X and Y
[in] blocksize magma_int_t number of rows in one ELL-slice
[in] slices magma_int_t number of slices in matrix
[in] alignment magma_int_t number of threads assigned to one row
[in] alpha double scalar multiplier
[in] dval magmaDouble_ptr array containing values of A in SELLP
[in] dcolind magmaIndex_ptr columnindices of A in SELLP
[in] drowptr magmaIndex_ptr rowpointer of SELLP
[in] dx magmaDouble_ptr input vector x
[in] beta double scalar multiplier
[out] dy magmaDouble_ptr input/output vector y
[in] queue magma_queue_t Queue to execute in.

Generated on 3 May 2015 for MAGMA by  doxygen 1.6.1