MAGMA  1.6.1
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
single precision

Functions

magma_int_t magma_snan_inf (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const float *A, magma_int_t lda, magma_int_t *cnt_nan, magma_int_t *cnt_inf)
 magma_snan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values. More...
 
magma_int_t magma_snan_inf_gpu (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magma_int_t *cnt_nan, magma_int_t *cnt_inf)
 magma_snan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values. More...
 
void magma_sprint (magma_int_t m, magma_int_t n, const float *A, magma_int_t lda)
 magma_sprint prints a matrix that is located on the CPU host. More...
 
void magma_sprint_gpu (magma_int_t m, magma_int_t n, const float *dA, magma_int_t ldda)
 magma_sprint_gpu prints a matrix that is located on the GPU device. More...
 
void magmablas_sgeadd_q (magma_int_t m, magma_int_t n, float alpha, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_queue_t queue)
 ZGEADD adds two matrices, dB = alpha*dA + dB. More...
 
void magmablas_sgeadd (magma_int_t m, magma_int_t n, float alpha, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb)
 
void magmablas_sgeadd_batched_q (magma_int_t m, magma_int_t n, float alpha, magmaFloat_const_ptr const dAarray[], magma_int_t ldda, magmaFloat_ptr dBarray[], magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue)
 ZGEADD adds two sets of matrices, dAarray[i] = alpha*dAarray[i] + dBarray[i], for i = 0, ..., batchCount-1. More...
 
void magmablas_sgeadd_batched (magma_int_t m, magma_int_t n, float alpha, magmaFloat_const_ptr const dAarray[], magma_int_t ldda, magmaFloat_ptr dBarray[], magma_int_t lddb, magma_int_t batchCount)
 
void magmablas_slacpy_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_queue_t queue)
 SLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB. More...
 
void magmablas_slacpy (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb)
 
void magmablas_slacpy_batched (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magmaFloat_const_ptr const dAarray[], magma_int_t ldda, magmaFloat_ptr dBarray[], magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue)
 SLACPY_BATCHED_Q copies all or part of each two-dimensional matrix dAarray[i] to matrix dBarray[i], for 0 <= i < batchcount. More...
 
void magmablas_slag2d_q (magma_int_t m, magma_int_t n, magmaFloat_const_ptr SA, magma_int_t ldsa, magmaDouble_ptr A, magma_int_t lda, magma_int_t *info, magma_queue_t queue)
 SLAG2D_STREAM converts a single-real matrix, SA, to a double-real matrix, A. More...
 
void magmablas_slag2d (magma_int_t m, magma_int_t n, magmaFloat_const_ptr SA, magma_int_t ldsa, magmaDouble_ptr A, magma_int_t lda, magma_int_t *info)
 
float magmablas_slange (magma_norm_t norm, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dwork)
 SLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A. More...
 
float magmablas_slansy (magma_norm_t norm, magma_uplo_t uplo, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dwork)
 SLANSY returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A. More...
 
void magmablas_slascl_q (magma_type_t type, magma_int_t kl, magma_int_t ku, float cfrom, float cto, magma_int_t m, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_queue_t queue, magma_int_t *info)
 SLASCL multiplies the M by N real matrix A by the real scalar CTO/CFROM. More...
 
void magmablas_slascl (magma_type_t type, magma_int_t kl, magma_int_t ku, float cfrom, float cto, magma_int_t m, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_slascl2_q (magma_type_t type, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dD, magmaFloat_ptr dA, magma_int_t ldda, magma_queue_t queue, magma_int_t *info)
 SLASCL2 scales the M by N real matrix A by the real diagonal matrix dD. More...
 
void magmablas_slascl2 (magma_type_t type, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dD, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_slascl_2x2_q (magma_type_t type, magma_int_t m, const float *dW, magma_int_t lddw, float *dA, magma_int_t ldda, magma_int_t *info, magma_queue_t queue)
 SLASCL_2x2 scales the M by M real matrix A by the 2-by-2 pivot. More...
 
void magmablas_slascl_2x2 (magma_type_t type, magma_int_t m, float *dW, magma_int_t lddw, float *dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_slascl_diag_q (magma_type_t type, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dD, magma_int_t lddd, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info, magma_queue_t queue)
 SLASCL2 scales the M by N real matrix A by the real diagonal matrix dD. More...
 
void magmablas_slascl_diag (magma_type_t type, magma_int_t m, magma_int_t n, magmaFloat_const_ptr dD, magma_int_t lddd, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info)
 
void magmablas_slaset_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, float offdiag, float diag, magmaFloat_ptr dA, magma_int_t ldda, magma_queue_t queue)
 SLASET_STREAM initializes a 2-D array A to DIAG on the diagonal and OFFDIAG on the off-diagonals. More...
 
void magmablas_slaset (magma_uplo_t uplo, magma_int_t m, magma_int_t n, float offdiag, float diag, magmaFloat_ptr dA, magma_int_t ldda)
 
void magmablas_slaset_band_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t k, float offdiag, float diag, magmaFloat_ptr dA, magma_int_t ldda, magma_queue_t queue)
 SLASET_BAND_STREAM initializes the main diagonal of dA to DIAG, and the K-1 sub- or super-diagonals to OFFDIAG. More...
 
void magmablas_slaset_band (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t k, float offdiag, float diag, magmaFloat_ptr dA, magma_int_t ldda)
 
void magmablas_slaswp_q (magma_int_t n, magmaFloat_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

SLASWP performs a series of row interchanges on the matrix A. More...
 
void magmablas_slaswp (magma_int_t n, magmaFloat_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
 
void magmablas_slaswpx_q (magma_int_t n, magmaFloat_ptr dA, magma_int_t ldx, magma_int_t ldy, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

SLASWPX performs a series of row interchanges on the matrix A. More...
 
void magmablas_slaswpx (magma_int_t n, magmaFloat_ptr dA, magma_int_t ldx, magma_int_t ldy, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
 
void magmablas_slaswp2_q (magma_int_t n, magmaFloat_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, magmaInt_const_ptr d_ipiv, magma_int_t inci, magma_queue_t queue)
 

Purpose:

SLASWP2 performs a series of row interchanges on the matrix A. More...
 
void magmablas_slaswp2 (magma_int_t n, magmaFloat_ptr dAT, magma_int_t ldda, magma_int_t k1, magma_int_t k2, magmaInt_const_ptr d_ipiv, magma_int_t inci)
 
void magmablas_sswapdblk_q (magma_int_t n, magma_int_t nb, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t inca, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t incb, magma_queue_t queue)
 sswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU. More...
 
void magmablas_sswapdblk (magma_int_t n, magma_int_t nb, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t inca, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t incb)
 
void magmablas_ssymmetrize_q (magma_uplo_t uplo, magma_int_t m, magmaFloat_ptr dA, magma_int_t ldda, magma_queue_t queue)
 SSYMMETRIZE copies lower triangle to upper triangle, or vice-versa, to make dA a general representation of a symmetric matrix. More...
 
void magmablas_ssymmetrize (magma_uplo_t uplo, magma_int_t m, magmaFloat_ptr dA, magma_int_t ldda)
 
void magmablas_ssymmetrize_tiles_q (magma_uplo_t uplo, magma_int_t m, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t ntile, magma_int_t mstride, magma_int_t nstride, magma_queue_t queue)
 SSYMMETRIZE_TILES copies lower triangle to upper triangle, or vice-versa, to make some blocks of dA into general representations of a symmetric block. More...
 
void magmablas_ssymmetrize_tiles (magma_uplo_t uplo, magma_int_t m, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t ntile, magma_int_t mstride, magma_int_t nstride)
 
void magmablas_stranspose_q (magma_int_t m, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dAT, magma_int_t lddat, magma_queue_t queue)
 stranspose_q copies and transposes a matrix dA to matrix dAT. More...
 
void magmablas_stranspose (magma_int_t m, magma_int_t n, magmaFloat_const_ptr dA, magma_int_t ldda, magmaFloat_ptr dAT, magma_int_t lddat)
 
void magmablas_stranspose_batched_q (magma_int_t m, magma_int_t n, float **dA_array, magma_int_t ldda, float **dAT_array, magma_int_t lddat, magma_int_t batchCount, magma_queue_t queue)
 stranspose_batched_q copies and transposes a matrix dA_array[i] to matrix dAT_array[i]. More...
 
void magmablas_stranspose_batched (magma_int_t m, magma_int_t n, float **dA_array, magma_int_t ldda, float **dAT_array, magma_int_t lddat, magma_int_t batchCount)
 
void magmablas_stranspose_inplace_q (magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_queue_t queue)
 stranspose_inplace_q transposes a square N-by-N matrix in-place. More...
 
void magmablas_stranspose_inplace (magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda)
 

Detailed Description

Function Documentation

magma_int_t magma_snan_inf ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const float *  A,
magma_int_t  lda,
magma_int_t *  cnt_nan,
magma_int_t *  cnt_inf 
)

magma_snan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.

NAN is created by 0/0 and similar. INF is created by x/0 and similar, where x != 0.

Parameters
[in]uplomagma_uplo_t Specifies what part of the matrix A to check.
  • = MagmaUpper: Upper triangular part of A
  • = MagmaLower: Lower triangular part of A
  • = MagmaFull: All of A
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]AREAL array, dimension (LDA,N), on the CPU host. The M-by-N matrix to be printed.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]cnt_nanINTEGER* If non-NULL, on exit contains the number of NAN values in A.
[out]cnt_infINTEGER* If non-NULL, on exit contains the number of INF values in A.
Returns
  • >= 0: Returns number of NAN + number of INF values.
  • < 0: If it returns -i, the i-th argument had an illegal value, or another error occured, such as memory allocation failed.
magma_int_t magma_snan_inf_gpu ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magma_int_t *  cnt_nan,
magma_int_t *  cnt_inf 
)

magma_snan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.

NAN is created by 0/0 and similar. INF is created by x/0 and similar, where x != 0.

Parameters
[in]uplomagma_uplo_t Specifies what part of the matrix A to check.
  • = MagmaUpper: Upper triangular part of A
  • = MagmaLower: Lower triangular part of A
  • = MagmaFull: All of A
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dAREAL array, dimension (LDDA,N), on the GPU device. The M-by-N matrix to be printed.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]cnt_nanINTEGER* If non-NULL, on exit contains the number of NAN values in A.
[out]cnt_infINTEGER* If non-NULL, on exit contains the number of INF values in A.
Returns
  • >= 0: Returns number of NAN + number of INF values.
  • < 0: If it returns -i, the i-th argument had an illegal value, or another error occured, such as memory allocation failed.
void magma_sprint ( magma_int_t  m,
magma_int_t  n,
const float *  A,
magma_int_t  lda 
)

magma_sprint prints a matrix that is located on the CPU host.

The output is intended to be Matlab compatible, to be useful in debugging.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]AREAL array, dimension (LDA,N), on the CPU host. The M-by-N matrix to be printed.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
void magma_sprint_gpu ( magma_int_t  m,
magma_int_t  n,
const float *  dA,
magma_int_t  ldda 
)

magma_sprint_gpu prints a matrix that is located on the GPU device.

Internally, it allocates CPU memory and copies the matrix to the CPU. The output is intended to be Matlab compatible, to be useful in debugging.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dAREAL array, dimension (LDDA,N), on the GPU device. The M-by-N matrix to be printed.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
void magmablas_sgeadd ( magma_int_t  m,
magma_int_t  n,
float  alpha,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb 
)
void magmablas_sgeadd_batched ( magma_int_t  m,
magma_int_t  n,
float  alpha,
magmaFloat_const_ptr const  dAarray[],
magma_int_t  ldda,
magmaFloat_ptr  dBarray[],
magma_int_t  lddb,
magma_int_t  batchCount 
)
void magmablas_sgeadd_batched_q ( magma_int_t  m,
magma_int_t  n,
float  alpha,
magmaFloat_const_ptr const  dAarray[],
magma_int_t  ldda,
magmaFloat_ptr  dBarray[],
magma_int_t  lddb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

ZGEADD adds two sets of matrices, dAarray[i] = alpha*dAarray[i] + dBarray[i], for i = 0, ..., batchCount-1.

Parameters
[in]mINTEGER The number of rows of each matrix dAarray[i]. M >= 0.
[in]nINTEGER The number of columns of each matrix dAarray[i]. N >= 0.
[in]alphaREAL The scalar alpha.
[in]dAarrayarray on GPU, dimension(batchCount), of pointers to arrays, with each array a REAL array, dimension (LDDA,N) The m by n matrices dAarray[i].
[in]lddaINTEGER The leading dimension of each array dAarray[i]. LDDA >= max(1,M).
[in,out]dBarrayarray on GPU, dimension(batchCount), of pointers to arrays, with each array a REAL array, dimension (LDDB,N) The m by n matrices dBarray[i].
[in]lddbINTEGER The leading dimension of each array dBarray[i]. LDDB >= max(1,M).
[in]batchCountINTEGER The number of matrices to add; length of dAarray and dBarray. batchCount >= 0.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_sgeadd_q ( magma_int_t  m,
magma_int_t  n,
float  alpha,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

ZGEADD adds two matrices, dB = alpha*dA + dB.

Parameters
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]alphaREAL The scalar alpha.
[in]dAREAL array, dimension (LDDA,N) The m by n matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in,out]dBREAL array, dimension (LDDB,N) The m by n matrix dB.
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slacpy ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb 
)
void magmablas_slacpy_batched ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr const  dAarray[],
magma_int_t  ldda,
magmaFloat_ptr  dBarray[],
magma_int_t  lddb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

SLACPY_BATCHED_Q copies all or part of each two-dimensional matrix dAarray[i] to matrix dBarray[i], for 0 <= i < batchcount.

This is the same as SLACPY_BATCHED, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of each matrix dA to be copied to dB.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of each matrix dA
[in]mINTEGER The number of rows of each matrix dA. M >= 0.
[in]nINTEGER The number of columns of each matrix dA. N >= 0.
[in]dAarrayREAL* array, dimension (batchCount) array of pointers to the matrices dA, where each dA is of dimension (LDDA,N) The m by n matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in]lddaINTEGER The leading dimension of each array dA. LDDA >= max(1,M).
[out]dBarrayREAL* array, dimension (batchCount) array of pointers to the matrices dB, where each dB is of dimension (LDDB,N) The m by n matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in]lddbINTEGER The leading dimension of each array dB. LDDB >= max(1,M).
[in]batchCountNumber of matrices in dAarray and dBarray.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slacpy_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

SLACPY_Q copies all or part of a two-dimensional matrix dA to another matrix dB.

This is the same as SLACPY, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be copied to dB.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of the matrix dA
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dAREAL array, dimension (LDDA,N) The m by n matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[out]dBREAL array, dimension (LDDB,N) The m by n matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slag2d ( magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  SA,
magma_int_t  ldsa,
magmaDouble_ptr  A,
magma_int_t  lda,
magma_int_t *  info 
)
void magmablas_slag2d_q ( magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  SA,
magma_int_t  ldsa,
magmaDouble_ptr  A,
magma_int_t  lda,
magma_int_t *  info,
magma_queue_t  queue 
)

SLAG2D_STREAM converts a single-real matrix, SA, to a double-real matrix, A.

Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.

Parameters
[in]mINTEGER The number of lines of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]SAREAL array, dimension (LDSA,N) On entry, the M-by-N coefficient matrix SA.
[in]ldsaINTEGER The leading dimension of the array SA. LDSA >= max(1,M).
[out]ADOUBLE PRECISION array, dimension (LDA,N) On exit, the M-by-N coefficient matrix A.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in]queuemagma_queue_t Queue to execute in.
float magmablas_slange ( magma_norm_t  norm,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dwork 
)

SLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.

Description

SLANGE returns the value

SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ** not yet supported

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters
[in]normCHARACTER*1 Specifies the value to be returned in SLANGE as described above.
[in]mINTEGER The number of rows of the matrix A. M >= 0. When M = 0, SLANGE is set to zero.
[in]nINTEGER The number of columns of the matrix A. N >= 0. When N = 0, SLANGE is set to zero.
[in]AREAL array on the GPU, dimension (LDA,N) The m by n matrix A.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(M,1).
dwork(workspace) REAL array on the GPU, dimension (LWORK).
[in]lworkINTEGER The dimension of the array WORK. If NORM = 'I' or 'M', LWORK >= max( 1, M ). If NORM = '1', LWORK >= max( 1, N ). Note this is different than LAPACK, which requires WORK only for NORM = 'I', and does not pass LWORK.
float magmablas_slansy ( magma_norm_t  norm,
magma_uplo_t  uplo,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dwork 
)

SLANSY returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A.

SLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ** supported only for (PRECISION_s || PRECISION_d || PRECISION_c || CUDA_ARCH >= 200) ( ( normI(A), NORM = 'I' or 'i' ** supported only for (PRECISION_s || PRECISION_d || PRECISION_c || CUDA_ARCH >= 200) ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ** not yet supported

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Returns SLANSY < 0: if SLANSY = -i, the i-th argument had an illegal value.

Arguments:

Parameters
[in]normCHARACTER*1 Specifies the value to be returned in SLANSY as described above.
[in]uplomagma_uplo_t Specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced.
  • = MagmaUpper: Upper triangular part of A is referenced
  • = MagmaLower: Lower triangular part of A is referenced
[in]nINTEGER The order of the matrix A. N >= 0. When N = 0, SLANSY is set to zero.
[in]AREAL array on the GPU, dimension (LDA,N) The symmetric matrix A. If UPLO = MagmaUpper, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(N,1).
dwork(workspace) REAL array on the GPU, dimension (MAX(1,LWORK)), where LWORK >= N. NOTE: this is different than LAPACK, where WORK is required only for norm1 and normI. Here max-norm also requires work.
void magmablas_slascl ( magma_type_t  type,
magma_int_t  kl,
magma_int_t  ku,
float  cfrom,
float  cto,
magma_int_t  m,
magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_slascl2 ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dD,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_slascl2_q ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dD,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue,
magma_int_t *  info 
)

SLASCL2 scales the M by N real matrix A by the real diagonal matrix dD.

TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dDREAL vector, dimension (M) The diagonal matrix containing the scalar factors. Stored as a vector.
[in,out]dAREAL array, dimension (LDDA,N) The matrix to be scaled by dD. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slascl_2x2 ( magma_type_t  type,
magma_int_t  m,
float *  dW,
magma_int_t  lddw,
float *  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_slascl_2x2_q ( magma_type_t  type,
magma_int_t  m,
const float *  dW,
magma_int_t  lddw,
float *  dA,
magma_int_t  ldda,
magma_int_t *  info,
magma_queue_t  queue 
)

SLASCL_2x2 scales the M by M real matrix A by the 2-by-2 pivot.

TYPE specifies that A may be upper or lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]dWREAL vector, dimension (2*lddw) The matrix containing the 2-by-2 pivot.
[in]lddwINTEGER The leading dimension of the array W. LDDA >= max(1,M).
[in,out]dAREAL array, dimension (LDDA,N) The matrix to be scaled by dW. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
void magmablas_slascl_diag ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dD,
magma_int_t  lddd,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_slascl_diag_q ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dD,
magma_int_t  lddd,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info,
magma_queue_t  queue 
)

SLASCL2 scales the M by N real matrix A by the real diagonal matrix dD.

TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in]dDREAL vector, dimension (M) The diagonal matrix containing the scalar factors. Stored as a vector.
[in,out]dAREAL array, dimension (LDDA,N) The matrix to be scaled by dD. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
void magmablas_slascl_q ( magma_type_t  type,
magma_int_t  kl,
magma_int_t  ku,
float  cfrom,
float  cto,
magma_int_t  m,
magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue,
magma_int_t *  info 
)

SLASCL multiplies the M by N real matrix A by the real scalar CTO/CFROM.

This is done without over/underflow as long as the final result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters
[in]typemagma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in]klINTEGER Unused, for LAPACK compatability.
[in]kuKU is INTEGER Unused, for LAPACK compatability.
[in]cfromREAL
[in]ctoREAL
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed without over/underflow if the final result CTO*A(I,J)/CFROM can be represented without over/underflow. CFROM must be nonzero. CFROM and CTO must not be NAN.
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dAREAL array, dimension (LDDA,N) The matrix to be multiplied by CTO/CFROM. See TYPE for the storage type.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slaset ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
float  offdiag,
float  diag,
magmaFloat_ptr  dA,
magma_int_t  ldda 
)
void magmablas_slaset_band ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t  k,
float  offdiag,
float  diag,
magmaFloat_ptr  dA,
magma_int_t  ldda 
)
void magmablas_slaset_band_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t  k,
float  offdiag,
float  diag,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

SLASET_BAND_STREAM initializes the main diagonal of dA to DIAG, and the K-1 sub- or super-diagonals to OFFDIAG.

This is the same as SLASET_BAND, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be set.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]kINTEGER The number of diagonals to set, including the main diagonal. K >= 0. Currently, K <= 1024 due to CUDA restrictions (max. number of threads per block).
[in]offdiagREAL Off-diagonal elements in the band are set to OFFDIAG.
[in]diagREAL All the main diagonal elements are set to DIAG.
[in]dAREAL array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed. On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n where i != j, abs(i-j) < k; A(i,i) = BETA , 1 <= i <= min(m,n)
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in]queuemagma_queue_t Stream to execute SLASET in.
void magmablas_slaset_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
float  offdiag,
float  diag,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

SLASET_STREAM initializes a 2-D array A to DIAG on the diagonal and OFFDIAG on the off-diagonals.

This is the same as SLASET, but adds queue argument.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA to be set.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of the matrix dA is set.
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]offdiagREAL The scalar OFFDIAG. (In LAPACK this is called ALPHA.)
[in]diagREAL The scalar DIAG. (In LAPACK this is called BETA.)
[in]dAREAL array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed. On exit, A(i,j) = OFFDIAG, 1 <= i <= m, 1 <= j <= n, i != j; A(i,i) = DIAG, 1 <= i <= min(m,n)
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slaswp ( magma_int_t  n,
magmaFloat_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_slaswp2 ( magma_int_t  n,
magmaFloat_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
magmaInt_const_ptr  d_ipiv,
magma_int_t  inci 
)
void magmablas_slaswp2_q ( magma_int_t  n,
magmaFloat_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
magmaInt_const_ptr  d_ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

SLASWP2 performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored row-wise (hence dAT). ** Otherwise, this is identical to LAPACK's interface.

Here, d_ipiv is passed in GPU memory.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dATREAL array on GPU, stored row-wise, dimension (LDDA,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]lddaINTEGER The leading dimension of the array A. (I.e., stride between elements in a column.)
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in]d_ipivINTEGER array, on GPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slaswp_q ( magma_int_t  n,
magmaFloat_ptr  dAT,
magma_int_t  ldda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

SLASWP performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored row-wise (hence dAT). ** Otherwise, this is identical to LAPACK's interface.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dATREAL array on GPU, stored row-wise, dimension (LDDA,N) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]lddaINTEGER The leading dimension of the array A. ldda >= n.
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (Fortran one-based index: 1 <= k1 .)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (Fortran one-based index: 1 <= k2 .)
[in]ipivINTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, INCI > 0. TODO: If INCI is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_slaswpx ( magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldx,
magma_int_t  ldy,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_slaswpx_q ( magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldx,
magma_int_t  ldy,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose:

SLASWPX performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored either row-wise or column-wise, depending on ldx and ldy. ** Otherwise, this is identical to LAPACK's interface.

Arguments:

Parameters
[in]nINTEGER The number of columns of the matrix A.
[in,out]dAREAL array on GPU, dimension (*,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in]ldxINTEGER Stride between elements in same column.
[in]ldyINTEGER Stride between elements in same row. For A stored row-wise, set ldx=ldda and ldy=1. For A stored column-wise, set ldx=1 and ldy=ldda.
[in]k1INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in]k2INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in]ipivINTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in]inciINTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_sswapdblk ( magma_int_t  n,
magma_int_t  nb,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t  inca,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_int_t  incb 
)
void magmablas_sswapdblk_q ( magma_int_t  n,
magma_int_t  nb,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t  inca,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_int_t  incb,
magma_queue_t  queue 
)

sswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU.

It swaps nblocks = n/nb blocks. For i = 1 .. nblocks, submatrices dA( i*nb*inca, i*nb ) and dB( i*nb*incb, i*nb ) are swapped.

Parameters
[in]nINTEGER The number of columns of the matrices dA and dB. N >= 0.
[in]nbINTEGER The size of diagonal blocks. NB > 0 and NB <= maximum threads per CUDA block (512 or 1024).
[in,out]dAREAL array, dimension (LDDA,N) The matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= (nblocks - 1)*nb*inca + nb.
[in]incaINTEGER The row increment between diagonal blocks of dA. inca >= 0. For example, inca = 1 means blocks are stored on the diagonal at dA(i*nb, i*nb), inca = 0 means blocks are stored side-by-side at dA(0, i*nb).
[in,out]dBREAL array, dimension (LDDB,N) The matrix dB.
[in]lddbINTEGER The leading dimension of the array db. LDDB >= (nblocks - 1)*nb*incb + nb.
[in]incbINTEGER The row increment between diagonal blocks of dB. incb >= 0. See inca.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_ssymmetrize ( magma_uplo_t  uplo,
magma_int_t  m,
magmaFloat_ptr  dA,
magma_int_t  ldda 
)
void magmablas_ssymmetrize_q ( magma_uplo_t  uplo,
magma_int_t  m,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

SSYMMETRIZE copies lower triangle to upper triangle, or vice-versa, to make dA a general representation of a symmetric matrix.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA that is valid on input.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in,out]dAREAL array, dimension (LDDA,N) The m by m matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in]queuemagma_queue_t Queue to execute in.
void magmablas_ssymmetrize_tiles ( magma_uplo_t  uplo,
magma_int_t  m,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t  ntile,
magma_int_t  mstride,
magma_int_t  nstride 
)
void magmablas_ssymmetrize_tiles_q ( magma_uplo_t  uplo,
magma_int_t  m,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t  ntile,
magma_int_t  mstride,
magma_int_t  nstride,
magma_queue_t  queue 
)

SSYMMETRIZE_TILES copies lower triangle to upper triangle, or vice-versa, to make some blocks of dA into general representations of a symmetric block.

This processes NTILE blocks, typically the diagonal blocks. Each block is offset by mstride rows and nstride columns from the previous block.

Parameters
[in]uplomagma_uplo_t Specifies the part of the matrix dA that is valid on input.
  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in]mINTEGER The number of rows & columns of each square block of dA. M >= 0.
[in,out]dAREAL array, dimension (LDDA,N) The matrix dA. N = m + nstride*(ntile-1).
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1, m + mstride*(ntile-1)).
[in]ntileINTEGER Number of blocks to symmetrize. ntile >= 0.
[in]mstrideINTEGER Row offset from start of one block to start of next block. mstride >= 0. Either (mstride >= m) or (nstride >= m), to prevent m-by-m tiles from overlapping.
[in]nstrideINTEGER Column offset from start of one block to start of next block. nstride >= 0.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_stranspose ( magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dAT,
magma_int_t  lddat 
)
void magmablas_stranspose_batched ( magma_int_t  m,
magma_int_t  n,
float **  dA_array,
magma_int_t  ldda,
float **  dAT_array,
magma_int_t  lddat,
magma_int_t  batchCount 
)
void magmablas_stranspose_batched_q ( magma_int_t  m,
magma_int_t  n,
float **  dA_array,
magma_int_t  ldda,
float **  dAT_array,
magma_int_t  lddat,
magma_int_t  batchCount,
magma_queue_t  queue 
)

stranspose_batched_q copies and transposes a matrix dA_array[i] to matrix dAT_array[i].

Same as stranspose_batched, but adds queue argument.

Parameters
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dA_arrayREAL* array, dimension (batchCount) array of pointers to the matrices dA, where each dA is of dimension (LDDA,N) The M-by-N matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= M.
[in]dAT_arrayREAL* array, dimension (batchCount) array of pointers to the matrices dAT, where each dAT is of dimension (LDDAT,M) The N-by-M matrix dAT.
[in]lddatINTEGER The leading dimension of the array dAT. LDDAT >= N.
[in]queuemagma_queue_t Queue to execute in.
[in]batchCountNumber of matrices in dA_array and dAT_array
void magmablas_stranspose_inplace ( magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda 
)
void magmablas_stranspose_inplace_q ( magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

stranspose_inplace_q transposes a square N-by-N matrix in-place.

Same as stranspose_inplace, but adds queue argument.

Parameters
[in]nINTEGER The number of rows & columns of the matrix dA. N >= 0.
[in]dAREAL array, dimension (LDDA,N) The N-by-N matrix dA. On exit, dA(j,i) = dA_original(i,j), for 0 <= i,j < N.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= N.
[in]queuemagma_queue_t Queue to execute in.
void magmablas_stranspose_q ( magma_int_t  m,
magma_int_t  n,
magmaFloat_const_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dAT,
magma_int_t  lddat,
magma_queue_t  queue 
)

stranspose_q copies and transposes a matrix dA to matrix dAT.

Same as stranspose, but adds queue argument.

Parameters
[in]mINTEGER The number of rows of the matrix dA. M >= 0.
[in]nINTEGER The number of columns of the matrix dA. N >= 0.
[in]dAREAL array, dimension (LDDA,N) The M-by-N matrix dA.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= M.
[in]dATREAL array, dimension (LDDAT,M) The N-by-M matrix dAT.
[in]lddatINTEGER The leading dimension of the array dAT. LDDAT >= N.
[in]queuemagma_queue_t Queue to execute in.