![]() |
MAGMA
1.5.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_cgesv (magma_int_t n, magma_int_t nrhs, magmaFloatComplex *A, magma_int_t lda, magma_int_t *ipiv, magmaFloatComplex *B, magma_int_t ldb, magma_int_t *info) |
Solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More... | |
magma_int_t | magma_cgesv_gpu (magma_int_t n, magma_int_t nrhs, magmaFloatComplex *dA, magma_int_t ldda, magma_int_t *ipiv, magmaFloatComplex *dB, magma_int_t lddb, magma_int_t *info) |
Solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices. More... | |
magma_int_t magma_cgesv | ( | magma_int_t | n, |
magma_int_t | nrhs, | ||
magmaFloatComplex * | A, | ||
magma_int_t | lda, | ||
magma_int_t * | ipiv, | ||
magmaFloatComplex * | B, | ||
magma_int_t | ldb, | ||
magma_int_t * | info | ||
) |
Solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in,out] | A | COMPLEX array, dimension (LDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | ipiv | INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). |
[in,out] | B | COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | ldb | INTEGER The leading dimension of the array B. LDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_cgesv_gpu | ( | magma_int_t | n, |
magma_int_t | nrhs, | ||
magmaFloatComplex * | dA, | ||
magma_int_t | ldda, | ||
magma_int_t * | ipiv, | ||
magmaFloatComplex * | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info | ||
) |
Solves a system of linear equations A * X = B where A is a general N-by-N matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in,out] | dA | COMPLEX array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. |
[in] | ldda | INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | ipiv | INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). |
[in,out] | dB | COMPLEX array on the GPU, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDB >= max(1,N). |
[out] | info | INTEGER
|