MAGMA  1.5.0
Matrix Algebra for GPU and Multicore Architectures
 All Files Functions Groups
single-complex precision

Functions

magma_int_t magma_clauum (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magma_int_t *info)
 CLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A. More...
 
magma_int_t magma_clauum_gpu (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *dA, magma_int_t ldda, magma_int_t *info)
 CLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array dA. More...
 
magma_int_t magma_cpotf2_gpu (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magma_int_t *info)
 cpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A. More...
 
void clacgv (magma_int_t n, magmaFloatComplex *x, magma_int_t incx)
 

Purpose

More...
 

Detailed Description

Function Documentation

void clacgv ( magma_int_t  n,
magmaFloatComplex *  x,
magma_int_t  incx 
)

Purpose

CLACGV conjugates a complex vector of length N.

Arguments

Parameters
[in]nINTEGER The length of the vector X. N >= 0.
[in,out]xCOMPLEX array, dimension (1+(N-1)*abs(INCX)) On entry, the vector of length N to be conjugated. On exit, X is overwritten with conjg(X).
[in]incxINTEGER The spacing between successive elements of X.
magma_int_t magma_clauum ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloatComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

CLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A.

If UPLO = MagmaUpper then the upper triangle of the result is stored, overwriting the factor U in A. If UPLO = MagmaLower then the lower triangle of the result is stored, overwriting the factor L in A. This is the blocked form of the algorithm, calling Level 3 BLAS.

Parameters
[in]uplomagma_uplo_t Specifies whether the triangular factor stored in the array A is upper or lower triangular:
  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in]nINTEGER The order of the triangular factor U or L. N >= 0.
[in,out]ACOPLEX_16 array, dimension (LDA,N) On entry, the triangular factor U or L. On exit, if UPLO = MagmaUpper, the upper triangle of A is overwritten with the upper triangle of the product U * U'; if UPLO = MagmaLower, the lower triangle of A is overwritten with the lower triangle of the product L' * L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
magma_int_t magma_clauum_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloatComplex *  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

CLAUUM computes the product U * U' or L' * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array dA.

If UPLO = MagmaUpper then the upper triangle of the result is stored, overwriting the factor U in dA. If UPLO = MagmaLower then the lower triangle of the result is stored, overwriting the factor L in dA. This is the blocked form of the algorithm, calling Level 3 BLAS.

Parameters
[in]uplomagma_uplo_t Specifies whether the triangular factor stored in the array dA is upper or lower triangular:
  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in]nINTEGER The order of the triangular factor U or L. N >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L. On exit, if UPLO = MagmaUpper, the upper triangle of dA is overwritten with the upper triangle of the product U * U'; if UPLO = MagmaLower, the lower triangle of dA is overwritten with the lower triangle of the product L' * L.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
magma_int_t magma_cpotf2_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloatComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

cpotf2 computes the Cholesky factorization of a real symmetric positive definite matrix A.

The factorization has the form A = U' * U , if UPLO = MagmaUpper, or A = L * L', if UPLO = MagmaLower, where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters
[in]uplomagma_uplo_t Specifies whether the upper or lower triangular part of the symmetric matrix A is stored.
  • = MagmaUpper: Upper triangular
  • = MagmaLower: Lower triangular
[in]nINTEGER The order of the matrix A. N >= 0 and N <= 1024. On CUDA architecture 1.x cards, N <= 512.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U'*U or A = L*L'.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -k, the k-th argument had an illegal value
  • > 0: if INFO = k, the leading minor of order k is not positive definite, and the factorization could not be completed.