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Chapter 1

The MAGMA Library

Major chip manufacturers are developing next-generation microprocessor de-
signs that are heterogeneous/hybrid in nature, integrating homogeneous x86-
based multicore CPU components and GPU components. The MAGMA (Ma-
trix Algebra on GPU and Multicore Architectures) project’s goal is to develop
innovative linear algebra algorithms and to incorporate them into a library that
is

• similar to LAPACK in functionality, data storage, and interface

but targeting the

• next-generation of highly parallel, and heterogeneous processors.

This will allow scientists to effortlessly port any of their LAPACK-relying soft-
ware components and to take advantage of the new architectures.

MAGMA is designed to run on homogeneous x86-based multicores and take
advantage of GPU components (if available). This is achieved by developing
a class of multi-level blocking algorithms that split the computation into
tasks of varying granularity (e.g. large for available GPUs) and dynamically
scheduling their execution.

The transition from small tasks (of small block size) to large tasks is done in
a recursive fashion where the intermediate for the transition tasks are executed
in parallel using dynamic scheduling. The new algorithms, when run on just
homogeneous x86-based multicores, outperform vendor implementations (e.g.
MKL) in LAPACK accuracy and data layout (no block data-layouts). Adding
a GPU increases the performance proportionally to the GPU’s computational
characteristics. These results are for the one-sided matrix factorizations – LU,
QR, and Cholesky. Work on the two-sided factorizations, e.g. Hessenberg re-
duction, shows more drastic performance improvements (significantly exceeding
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an order of magnitude) when comparing homogeneous multicores to hybrid mul-
ticores+GPUs. The main reason for these performance improvements is mainly
due to the fact that the two-sided factorizations have bandwidth limitations
that can not be overcome using just homogeneous multicores.

In addition to standard accuracy algorithms (LAPACK compliant accuracy),
we develop algorithms within MAGMA that would allow a user-defined trade-
off between accuracy and speed. These algorithms are based on mixed-precision
arithmetic and take advantage of GPU’s still much higher single vs double pre-
cision arithmetic.

MAGMA version 0.1 is a release intended for a single GPU – see the
specifications in Section 2.1. MAGMA (version 0.1) includes the 3 one-sided
matrix factorizations: LU, QR, and Cholesky. There are functions for single
and double precision arithmetic and for each of them there are 2 LAPACK-
style interfaces. The first one, referred to as CPU interface, takes the input
and produces the result in the CPU’s memory. The second, referred to as GPU

interface, takes the input and produces the result in the GPU’s memory.

The algorithm names are derived by the corresponding LAPACK names,
prefixed by magma , and for the case of the GPU interface suffixed by gpu.

This is an alpha release. It is based on the hybridization of the corre-
sponding LAPACK algorithms [5, 7] and GPU motivated algorithmic innova-
tions [7, 1]. The accuracy is as in LAPACK. The performance relies on the
performance of the CPU BLAS and GPU BLAS used. Upcoming releases will
incorporate

• Multi-level blocking;

• User defined choice on running using available GPUs or just stand alone
homogeneous multicores;

• Auto-tuning [3];

• Optimized GPU BLAS [7, 3];

• New routines allowing for trade-off between performance and accuracy
(including mixed precision) [1, 7];

• Routines for optimized use of the multicore host [5, 6];

• Two-sided factorizations and eigen-problem solvers [6].

• New DLA developments on communication-optimal algorithms [2];

A reference performance is given in Chapter 3.
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1.1 Function magma sgetrf

int

magma_sgetrf(int *m, int *n, float *a, int *lda,

int *ipiv, float *work, float *da, int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

SGETRF computes an LU factorization of a general M-by-N matrix A

using partial pivoting with row interchanges.

The factorization has the form

A = P * L * U

where P is a permutation matrix, L is lower triangular with unit

diagonal elements (lower trapezoidal if m > n), and U is upper

triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P*L*U; the unit diagonal elements of L are not stored.

Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).
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IPIV (output) INTEGER array, dimension (min(M,N))

The pivot indices; for 1 <= i <= min(M,N), row i of the

matrix was interchanged with row IPIV(i).

WORK (workspace/output) REAL array, dimension >= N*NB,

where NB can be obtained through magma_get_sgetrf_nb(M).

Higher performance is achieved if WORK is in pinned memory,

e.g. allocated using cudaMallocHost.

DA (workspace) REAL array on the GPU, dimension

(max(M, N)+ k1)^2 + (M + k2)*NB + 2*NB^2,

where NB can be obtained through magma_get_sgetrf_nb(M).

k1 < 32 and k2 < 32 are such that

(max(M, N) + k1)%32==0 and (M+k2)%32==0.

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, U(i,i) is exactly zero. The factorization

has been completed, but the factor U is exactly

singular, and division by zero will occur if it is used

to solve a system of equations.

===================================================================== */
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1.2 Function magma sgeqrf

int

magma_sgeqrf(int *m, int *n, float *a, int *lda, float *tau,

float *work, int *lwork, float *da, int *info )

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

SGEQRF computes a QR factorization of a real M-by-N matrix A:

A = Q * R.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)

On entry, the M-by-N matrix A.

On exit, the elements on and above the diagonal of the array

contain the min(M,N)-by-N upper trapezoidal matrix R (R is

upper triangular if m >= n); the elements below the diagonal,

with the array TAU, represent the orthogonal matrix Q as a

product of min(m,n) elementary reflectors (see Further

Details).

Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

TAU (output) REAL array, dimension (min(M,N))

The scalar factors of the elementary reflectors (see Further

Details).
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WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))

On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

Higher performance is achieved if WORK is in pinned memory,

e.g. allocated using cudaMallocHost.

LWORK (input) INTEGER

The dimension of the array WORK. LWORK >= N*NB,

where NB can be obtained through magma_get_sgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine

only calculates the optimal size of the WORK array, returns

this value as the first entry of the WORK array, and no error

message related to LWORK is issued.

DA (workspace) REAL array on the GPU, dimension N*(M + NB),

where NB can be obtained through magma_get_sgeqrf_nb(M).

(size to be reduced in upcoming versions).

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

Further Details

===============

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with

v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),

and tau in TAU(i).

===================================================================== */
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1.3 Function magma spotrf

int

magma_spotrf(char *uplo, int *n, float *a, int *lda, float *work,

int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

SPOTRF computes the Cholesky factorization of a real symmetric

positive definite matrix A.

The factorization has the form

A = U**T * U, if UPLO = ’U’, or

A = L * L**T, if UPLO = ’L’,

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

Arguments

=========

UPLO (input) CHARACTER*1

= ’U’: Upper triangle of A is stored;

= ’L’: Lower triangle of A is stored.

N (input) INTEGER

The order of the matrix A. N >= 0.

A (input/output) REAL array, dimension (LDA,N)

On entry, the symmetric matrix A. If UPLO = ’U’, the leading

N-by-N upper triangular part of A contains the upper

triangular part of the matrix A, and the strictly lower

triangular part of A is not referenced. If UPLO = ’L’, the

leading N-by-N lower triangular part of A contains the lower

triangular part of the matrix A, and the strictly upper

triangular part of A is not referenced.

On exit, if INFO = 0, the factor U or L from the Cholesky

factorization A = U**T*U or A = L*L**T.
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Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) REAL array on the GPU, dimension (N, N)

(size to be reduced in upcoming versions).

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, the leading minor of order i is not

positive definite, and the factorization could not be

completed.

===================================================================== */
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1.4 Function magma sgetrf gpu

int

magma_sgetrf_gpu(int *m, int *n, float *a, int *lda,

int *ipiv, float *work, int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

SGETRF computes an LU factorization of a general M-by-N matrix A

using partial pivoting with row interchanges.

The factorization has the form

A = P * L * U

where P is a permutation matrix, L is lower triangular with unit

diagonal elements (lower trapezoidal if m > n), and U is upper

triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) REAL array on the GPU, dimension (LDA,N) where

LDA >= max(M, N)+k1 , k1<32 such that (max(M, N)+k1)%32==0.

The memory pointed by A should be at least

(max(M, N) + k1)^2 + (M + k2)*NB + 2*NB^2

where k2 < 32 such that (M + k2) %32 == 0.

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P*L*U; the unit diagonal elements of L are not stored.

The rest of A is considered work space and is changed.
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LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))

The pivot indices; for 1 <= i <= min(M,N), row i of the

matrix was interchanged with row IPIV(i).

WORK (workspace/output) REAL array, dimension >= N*NB,

where NB can be obtained through magma_get_sgetrf_nb(M).

Higher performance is achieved if WORK is in pinned memory,

e.g. allocated using cudaMallocHost.

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, U(i,i) is exactly zero. The factorization

has been completed, but the factor U is exactly

singular, and division by zero will occur if it is used

to solve a system of equations.

===================================================================== */
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1.5 Function magma sgeqrf gpu

int

magma_sgeqrf_gpu(int *m, int *n, float *a, int *lda, float *tau,

float *work, int *lwork, float *dwork, int *info )

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

SGEQRF computes a QR factorization of a real M-by-N matrix A:

A = Q * R.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) REAL array on the GPU, dimension (LDA,N)

On entry, the M-by-N matrix A.

On exit, the elements on and above the diagonal of the array

contain the min(M,N)-by-N upper trapezoidal matrix R (R is

upper triangular if m >= n); the elements below the diagonal,

with the array TAU, represent the orthogonal matrix Q as a

product of min(m,n) elementary reflectors (see Further

Details).

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

TAU (output) REAL array, dimension (min(M,N))

The scalar factors of the elementary reflectors (see Further

Details).

WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))

On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
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Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LWORK (input) INTEGER

The dimension of the array WORK. LWORK >= (M+N)*NB,

where NB can be obtained through magma_get_sgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine

only calculates the optimal size of the WORK array, returns

this value as the first entry of the WORK array, and no error

message related to LWORK is issued.

DWORK (workspace) REAL array on the GPU, dimension N*NB,

where NB can be obtained through magma_get_sgeqrf_nb(M).

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

Further Details

===============

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with

v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),

and tau in TAU(i).

===================================================================== */
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1.6 Function magma spotrf gpu

int

magma_spotrf_gpu(char *uplo, int *n, float *a, int *lda,

float *work, int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

SPOTRF computes the Cholesky factorization of a real symmetric

positive definite matrix A.

The factorization has the form

A = U**T * U, if UPLO = ’U’, or

A = L * L**T, if UPLO = ’L’,

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

Arguments

=========

UPLO (input) CHARACTER*1

= ’U’: Upper triangle of A is stored;

= ’L’: Lower triangle of A is stored.

N (input) INTEGER

The order of the matrix A. N >= 0.

A (input/output) REAL array on the GPU, dimension (LDA,N)

On entry, the symmetric matrix A. If UPLO = ’U’, the leading

N-by-N upper triangular part of A contains the upper

triangular part of the matrix A, and the strictly lower

triangular part of A is not referenced. If UPLO = ’L’, the

leading N-by-N lower triangular part of A contains the lower

triangular part of the matrix A, and the strictly upper

triangular part of A is not referenced.

On exit, if INFO = 0, the factor U or L from the Cholesky

factorization A = U**T*U or A = L*L**T.
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LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) REAL array, dimension at least (nb, nb)

where nb can be obtained through magma_get_spotrf_nb(*n)

Work array allocated with cudaMallocHost.

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, the leading minor of order i is not

positive definite, and the factorization could not be

completed.

===================================================================== */
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1.7 Function magma dgetrf

int

magma_dgetrf(int *m, int *n, double *a, int *lda,

int *ipiv, double *work, double *da, int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

DGETRF computes an LU factorization of a general M-by-N matrix A

using partial pivoting with row interchanges.

The factorization has the form

A = P * L * U

where P is a permutation matrix, L is lower triangular with unit

diagonal elements (lower trapezoidal if m > n), and U is upper

triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array, dimension (LDA,N)

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P*L*U; the unit diagonal elements of L are not stored.

Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).
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IPIV (output) INTEGER array, dimension (min(M,N))

The pivot indices; for 1 <= i <= min(M,N), row i of the

matrix was interchanged with row IPIV(i).

WORK (workspace/output) DOUBLE array, dimension >= N*NB,

where NB can be obtained through magma_get_sgetrf_nb(M).

Higher performance is achieved if WORK is in pinned memory,

e.g. allocated using cudaMallocHost.

DA (workspace) DOUBLE array on the GPU, dimension

(max(M, N)+ k1)^2 + (M + k2)*NB + 2*NB^2,

where NB can be obtained through magma_get_sgetrf_nb(M).

k1 < 32 and k2 < 32 are such that

(max(M, N) + k1)%32==0 and (M+k2)%32==0.

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, U(i,i) is exactly zero. The factorization

has been completed, but the factor U is exactly

singular, and division by zero will occur if it is used

to solve a system of equations.

===================================================================== */
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1.8 Function magma dgeqrf

int

magma_dgeqrf(int *m, int *n, double *a, int *lda, double *tau,

double *work, int *lwork, double *da, int *info )

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

DGEQRF computes a QR factorization of a real M-by-N matrix A:

A = Q * R.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array, dimension (LDA,N)

On entry, the M-by-N matrix A.

On exit, the elements on and above the diagonal of the array

contain the min(M,N)-by-N upper trapezoidal matrix R (R is

upper triangular if m >= n); the elements below the diagonal,

with the array TAU, represent the orthogonal matrix Q as a

product of min(m,n) elementary reflectors (see Further

Details).

Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE array, dimension (min(M,N))

The scalar factors of the elementary reflectors (see Further

Details).
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WORK (workspace/output) DOUBLE array, dimension (MAX(1,LWORK))

On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

Higher performance is achieved if WORK is in pinned memory,

e.g. allocated using cudaMallocHost.

LWORK (input) INTEGER

The dimension of the array WORK. LWORK >= N*NB,

where NB can be obtained through magma_get_dgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine

only calculates the optimal size of the WORK array, returns

this value as the first entry of the WORK array, and no error

message related to LWORK is issued.

DA (workspace) DOUBLE array on the GPU, dimension N*(M + NB),

where NB can be obtained through magma_get_dgeqrf_nb(M).

(size to be reduced in upcoming versions).

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

Further Details

===============

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with

v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),

and tau in TAU(i).

===================================================================== */
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1.9 Function magma dpotrf

int

magma_dpotrf(char *uplo, int *n, double *a, int *lda, double *work,

int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

DPOTRF computes the Cholesky factorization of a real symmetric

positive definite matrix A.

The factorization has the form

A = U**T * U, if UPLO = ’U’, or

A = L * L**T, if UPLO = ’L’,

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

Arguments

=========

UPLO (input) CHARACTER*1

= ’U’: Upper triangle of A is stored;

= ’L’: Lower triangle of A is stored.

N (input) INTEGER

The order of the matrix A. N >= 0.

A (input/output) DOUBLE array, dimension (LDA,N)

On entry, the symmetric matrix A. If UPLO = ’U’, the leading

N-by-N upper triangular part of A contains the upper

triangular part of the matrix A, and the strictly lower

triangular part of A is not referenced. If UPLO = ’L’, the

leading N-by-N lower triangular part of A contains the lower

triangular part of the matrix A, and the strictly upper

triangular part of A is not referenced.

On exit, if INFO = 0, the factor U or L from the Cholesky

factorization A = U**T*U or A = L*L**T.
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Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) DOUBLE array on the GPU, dimension (N, N)

(size to be reduced in upcoming versions).

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, the leading minor of order i is not

positive definite, and the factorization could not be

completed.

===================================================================== */
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1.10 Function magma dgetrf gpu

int

magma_dgetrf_gpu(int *m, int *n, double *a, int *lda,

int *ipiv, double *work, int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

DGETRF computes an LU factorization of a general M-by-N matrix A

using partial pivoting with row interchanges.

The factorization has the form

A = P * L * U

where P is a permutation matrix, L is lower triangular with unit

diagonal elements (lower trapezoidal if m > n), and U is upper

triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array on the GPU, dimension (LDA,N) where

LDA >= max(M, N)+k1 , k1<32 such that (max(M, N)+k1)%32==0.

The memory pointed by A should be at least

(max(M, N) + k1)^2 + (M + k2)*NB + 2*NB^2

where k2 < 32 such that (M + k2) %32 == 0.

On entry, the M-by-N matrix to be factored.

On exit, the factors L and U from the factorization

A = P*L*U; the unit diagonal elements of L are not stored.

The rest of A is considered work space and is changed.
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LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

IPIV (output) INTEGER array, dimension (min(M,N))

The pivot indices; for 1 <= i <= min(M,N), row i of the

matrix was interchanged with row IPIV(i).

WORK (workspace/output) DOUBLE array, dimension >= N*NB,

where NB can be obtained through magma_get_dgetrf_nb(M).

Higher performance is achieved if WORK is in pinned memory,

e.g. allocated using cudaMallocHost.

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, U(i,i) is exactly zero. The factorization

has been completed, but the factor U is exactly

singular, and division by zero will occur if it is used

to solve a system of equations.

===================================================================== */
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1.11 Function magma dgeqrf gpu

int

magma_dgeqrf_gpu(int *m, int *n, double *a, int *lda, double *tau,

double *work, int *lwork, double *dwork, int *info )

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

DGEQRF computes a QR factorization of a real M-by-N matrix A:

A = Q * R.

Arguments

=========

M (input) INTEGER

The number of rows of the matrix A. M >= 0.

N (input) INTEGER

The number of columns of the matrix A. N >= 0.

A (input/output) DOUBLE array on the GPU, dimension (LDA,N)

On entry, the M-by-N matrix A.

On exit, the elements on and above the diagonal of the array

contain the min(M,N)-by-N upper trapezoidal matrix R (R is

upper triangular if m >= n); the elements below the diagonal,

with the array TAU, represent the orthogonal matrix Q as a

product of min(m,n) elementary reflectors (see Further

Details).

LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

TAU (output) DOUBLE array, dimension (min(M,N))

The scalar factors of the elementary reflectors (see Further

Details).

WORK (workspace/output) DOUBLE array, dimension (MAX(1,LWORK))

On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
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Higher performance is achieved if A is in pinned memory,

e.g. allocated using cudaMallocHost.

LWORK (input) INTEGER

The dimension of the array WORK. LWORK >= (M+N)*NB,

where NB can be obtained through magma_get_dgeqrf_nb(M).

If LWORK = -1, then a workspace query is assumed; the routine

only calculates the optimal size of the WORK array, returns

this value as the first entry of the WORK array, and no error

message related to LWORK is issued.

DWORK (workspace) DOUBLE array on the GPU, dimension N*NB,

where NB can be obtained through magma_get_dgeqrf_nb(M).

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

Further Details

===============

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v’

where tau is a real scalar, and v is a real vector with

v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),

and tau in TAU(i).

===================================================================== */
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1.12 Function magma dpotrf gpu

int

magma_dpotrf_gpu(char *uplo, int *n, double *a, int *lda, double *work,

int *info)

{

/* -- MAGMA (version 0.1) --

Univ. of Tennessee, Knoxville

Univ. of California, Berkeley

Univ. of Colorado, Denver

June 2009

Purpose

=======

DPOTRF computes the Cholesky factorization of a real symmetric

positive definite matrix A.

The factorization has the form

A = U**T * U, if UPLO = ’U’, or

A = L * L**T, if UPLO = ’L’,

where U is an upper triangular matrix and L is lower triangular.

This is the block version of the algorithm, calling Level 3 BLAS.

Arguments

=========

UPLO (input) CHARACTER*1

= ’U’: Upper triangle of A is stored;

= ’L’: Lower triangle of A is stored.

N (input) INTEGER

The order of the matrix A. N >= 0.

A (input/output) DOUBLE array on the GPU, dimension (LDA,N)

On entry, the symmetric matrix A. If UPLO = ’U’, the leading

N-by-N upper triangular part of A contains the upper

triangular part of the matrix A, and the strictly lower

triangular part of A is not referenced. If UPLO = ’L’, the

leading N-by-N lower triangular part of A contains the lower

triangular part of the matrix A, and the strictly upper

triangular part of A is not referenced.

On exit, if INFO = 0, the factor U or L from the Cholesky

factorization A = U**T*U or A = L*L**T.
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LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,N).

WORK (workspace) DOUBLE array, dimension at least (nb, nb)

where nb can be obtained through magma_get_dpotrf_nb(*n)

Work array allocated with cudaMallocHost.

INFO (output) INTEGER

= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

> 0: if INFO = i, the leading minor of order i is not

positive definite, and the factorization could not be

completed.

===================================================================== */



Chapter 2

Use

2.1 Hardware specifications

MAGMA version 0.1 is intended for a single CUDA enabled NVIDIA GPU
and it’s host. CUDA enabled GPUs are for example the GeForce 8 Series, the
Tesla GPUs, and some Quadro GPUs [4]. MAGMA’s double precision routines
can be used on CUDA enabled GPUs that support double precision arithmetic.
These are for example the GeForce 200 Series and the Tesla solutions. The
host can be any shared memory multiprocessor for which LAPACK is suitable.
One host core is required and multiple can be used through multicore LAPACK
implementation.

2.2 Software specifications

MAGMA version 0.1 is a Linux release that requires

• the CUDA driver and CUDA toolkit 1;

• CPU BLAS and LAPACK.

MAGMA users do not have to know CUDA in order to use the library. A
testing directory gives examples on how to use every function (see Section 2.3).
Applications can use the CPU interface without any significant change to the
application – LAPACK calls have to be prefixed with magma and a workspace
argument (for the GPU memory) has to be added (shown in the examples).

1freely available from NVIDIA
http://www.nvidia.com/object/cuda get.html
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2.3 Testing

Directory magma/testing has drivers that test and show how to use every func-
tion of this distribution. Below is an example showing the output of the sgetrf
driver.

> ./testing_sgetrf

Using device 0: GeForce GTX 280

Usage:

testing_sgetrf -N 1024

N CPU GFlop/s GPU GFlop/s ||PA-LU|| / (||A||*N)

==========================================================

1024 33.26 42.77 1.861593e-09

2048 52.29 96.06 1.722339e-09

3072 64.03 146.33 1.411851e-09

4032 80.60 195.44 1.371482e-09

5184 86.65 224.92 1.332554e-09

6016 91.66 240.33 1.331916e-09

7040 96.02 255.51 1.306940e-09

8064 99.88 267.17 1.391934e-09

9088 101.18 276.59 1.549758e-09

10112 104.38 284.30 1.661756e-09

Performance and accuracy for particular values of the matrix size can also be
tested. Note that performance is slower for matrix sizes that are not divisible by
the block size of the corresponding algorithm. The block sizes will be auto-tuned
in future releases. Currently, the user can change them through file get nb.cpp

to manually tune the performance for specific hardware and software settings.
The issue for matrix sizes not divisible by the block size will be addressed
in future MAGMA releases (currently due to CUBLAS being slower for those
cases).

> ./testing_sgetrf -N 1026

Using device 0: GeForce GTX 280

N CPU GFlop/s GPU GFlop/s ||PA-LU|| / (||A||*N)

==========================================================

1026 32.93 41.09 1.834303e-09



Chapter 3

Performance

Here we give the reference performance results using MAGMA version 0.1 in
the following hardware and software configuration:

GPU: NVIDIA GeForce GTX 280;

CPU: Intel Xeon dual socket quad-core @ 2.33 GHz;

GPU BLAS: CUBLAS 2.1;

CPU BLAS: MKL 10.0;

Compiler: gcc 4.1.2;

Tuning: Hand tuned (and hard coded).

Note that this release is hand tuned for this particular configuration. Dif-
ferent configurations may require different tuning in which case there would be
a negative impact on the performance. Future releases will be auto-tuned using
an empirically-based approach [3]. A handle to user tuning is given in file
testing/get nb.cpp

through functions
magma get {function name} nb

which, based on a matrix size, return a block size to be used by the correspond-
ing function. Optimal sizes (for the functions in this distribution) would be a
multiple of 32.
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3.1 Single precision
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Figure 3.1: Performance of the CPU interface one-sided factorizations.
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Figure 3.2: Performance of the GPU interface one-sided factorizations.
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3.2 Double precision
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Figure 3.3: Performance of the CPU interface one-sided factorizations.
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