EARL - APl Documentation

High-Level Trace Access Library

Version 2.1 / November 5, 2004
Felix Wolf, Nikhil Bhatia

Copyright© 2004 University of Tennessee, Forschungszentrum Julich

Abstract

EARL is a high-level interface for accessiggILOG event traces and can be used to write
advanced trace-analysis softwag@RL provides random access to single events and computes
the execution state at the time of a given event as well as lekween pairs of related events.
EARL is implemented in C++ and offers a C++ and a Python classfatter This document
describes the abstractions in terms of which the event tsaepresented iBEARL and how to
efficiently access them using the C++ or Python API.

Contents
1 Introduction 1
2 DataMod€
2.1 ADBSIractions e e e e 2
2.2 EventModel. 3
2.3 Higher-Level Abstractions 5
3 C++API 6
3.1 class EventTrace @ @ i i e e 6

3.1.1 Constructor e e e
3.1.2 Methods to access program and system resources 6
3.1.3 Methodstoaccessevents L. 8
3.1.4 Methods to query the executionstate
3.1.5 Methodstoquerythecalltree

3.2 classEvent e 10
3.21 Eventattributes 10
3.2.2 Pointerattributes oo 12
3.23 Miscellaneous 2

3.3 classRegion 13

3.4 classCallsite e 14

3.5 classMetric 14

3.6 classLocation 15

3.7 classMachine 15

3.8 classNode e 16

3.9 classProcess 16

310 classThread 17

3.11 classCommunicator e e 17

3.12 class Cartesian 18

3.13 class P2Statistics e
3.13.1 Constructor e e e
3.13.2 Methods to manage thedataset
3.13.3 Quantiles
3.13.4 Miscellaneous

314 EXCEpPlioNS e e e e e e

315 Example e e e e e

Buffer Mechanisms

Python API
5.1 Differences between the C++and Python APl

Revision History
6.1 Revision 2.1

21

22
22

25

1 Introduction

An event trace is a chronologically sorted sequence of mentevents recorded during program
execution that can be used to analyze program behaviorelkdabak performance-analysis envi-
ronment [5, 6], event traces are used to identify patternisefficient execution.

KOJAK stores the event traces generated at runtime iretheoG binary trace-data format [7].
EPILOG traces consist of definition records and time-stamped eeeontds. Event records describe
the dynamic program behavior and reference objects thaledireed in definition records. By letting
event records store only references to those objects, fitacgize can be reduced since an object,
such as a region, is referenced many times.

To simplify the development of advanced trace-analysi$wso€, KOJAK provideseArL (Event
Analysis and Recognition Library), a high-level interfaioe accessing and processimgILOG
event traceseARL offers the following functionality:

e Random access to single events
e Access to the execution state at the time of a given event

Links between pairs of related events

Access to the application-level topologies.

Various statistical functions

EARL can be used for a large variety of trace-analysis tasks. Tdia purpose oEARL within
KOJAK is to simplify the specification of execution patterns reprging performance problems
within the EXPERT analyzer [8] and, thus, to allow an easy extension and cusébion of the
pattern base used in the analysis process. The first pretatf/pARL was completed in 1998 as
part of a master’s thesis [4].

Section 2 introduces the abstractions in terms of which antavace is presented to the usexRrL

is implemented in C++ and offers a C++ and a Python classfater The Python interface’s main
advantage is the ability to usRL interactively, which is useful especially for those unfhani
with the abstractions it provides. Section 3 explains howsi® the C++PI and gives a small code
example. After that, Section 4 presents the internal buffechanisms that support efficient random
access and tells how to configure them for maximum efficieRyally, Section 5 briefly describes
the Python binding and how it differs from the C++ binding.

Important: This version oEARL supportsPILOG version 1.1, which is included i0JAK version
2.0b. Please see th®@1L0G 1.1 specificatior$(PREFI X) / doc/ epi | og. ps? for details.

2 DataModd

EARL is based on a simple object-oriented data model, whoseisitypé derived from the fact that
all higher-level abstractions, such as execution stateéirzks between related events, are expressed
in terms of event sets or event references, thus never géavenfamiliar notion of an event.

1$(PREFI X) is thekoJAK installation directory.

2.1 Abstractions

An event traces a chronologically sorted sequence of events repregentie program run of an
MPI, OpermP, or hybrid application. The event trace offers random axte#is events including the
execution state at the time of a given event, as well as irdtion on program and system resources
involved in the program execution, such as source-codemsgind processes.

The central abstraction iBARL is anevent Every event has a type, a time stamp, and a location,
which answers the questions what happened, when it happemeédvhere it happened, respectively.
In addition, an event may provide type-specific attributestiding links to related events.

Interconnection Network

A 3

SMP' Node SMP [Node SMP | Node

node memory

node memory |

A TER

physical

logical

™~ Thread —

Figure 1: A parallel computer witamMP nodes.

The program resources represented in an event trace inlesleregions, and call sites. fle is
simply string containing a file name. rgionis a source-code section that can represent a function,
a loop, anopervpP construct, or an arbitrary user-defined section.cal site is a source-code
location where the control flow moves from one region to aeotAlthough it is called “call site”,

it does not need to be involved in a function call. HaRL, a loop entry can also be a call site
because the control flow moves from the enclosing regionddtta loop.

The system resources associated with an event trace forenaadtiy consisting of machines, nodes,
processes, and threaddachinescan be made up of multiple (potentialbmpP) nodes Each node
can host multiplegprocesseswhich in turn can spawn multiplthreads This model mirrors one

or more parallel computers withmp nodes (Figure 1) and can also accommodate more traditional
non-sMmp, singlesmp, or simple desktop architectures. An evérdationis a tuple consisting of a
machine, a node, a process, and a thread. A location is basidhread that includes information
on the process, the node, and the machine it is associated Avsingle-threaded process always
has one explicit thread becausesnRL the thread level is mandatory. AmPI communicatolis

a special type of resource referencedMm communication events and is modeled as a group of
processes. A virtualopologyis another special type of resource which maps the procesuks
threads onto the application domain and defines a neighbdrhelationship among theneEARL
currently supports onlgartesiangrid topologies.

Also, some events may store the values of certain systetnics such as the number of floating
point operations executed. A metric may represent the cofiatent occurrences (e.g., from a
hardware counter) across an interval, an occurrence radsurerl across an interval, or the current
value of a metric, such as the current memory utilization.

Event

pos
loc

time
type
enterptr

1

FLOW PP Siswncin
reg tag lock_id
com lockptr
length
ENTER ’ EXIT ‘ SEND, RECV. I FORKILE JOIN I : EAI___O_C_KEEEEEE‘ 'fffiiiR_L_o_c_K} : ‘

csite (opt.) dest src forkptr

cnodeptr sendptr
cedgeptr

MPICEXT7] | oMPCEXIT |

com
root
sent
recvd

Figure 2: Hierarchy of event types.

2.2 Event Model

The event model is defined by a hierarchy of abstract and etsmevent types, which is shown in
Figure 2 usinguML notation [1]. Abstract event types do not appear in the etrace, they are
used only to isolate commonalities in the model. In the figabstract event types have been distin-
guished by writing the type names in italics. The arrowsstilate an inheritance relationship with
respect to the type attributes, that is, an event type itshalliattributes from its ancestors. Hatched
boxes represemipi-specific types, whereas spotted boxes represgeimP-specific types. Table 1
explains the semantics of the event types and attributes.

In addition to the attributes listed in TableHEGION events may also carry values of system metrics,
such as hardware counters. If the event trace defines metviesy/FLOW event is required to carry
one value for each system metric defined in the trace.

To be able to interpret the records contained IrERN.OG event traceEARL relies on the following
validity constraints, which are already part of th®iLOG specification, but which are repeated here
for clarity:

The regions must be left in the opposite order they are ethtefbat is, the region that has
been entered last must be left first.

FORK and JOIN events are only generated by the master thread. Fidmx event before
entering and theoIN event after leaving the parallel region.

A SEND event must always appear before its correspondiagv event.

In hybrid MmPI/opervp applicationsSEND andRECV events are only allowed to be generated
by the master thread.

Table 1: Event types and attributes.

Event Type Description

EVENT (abstract) general event

FLOW (abstract) change of control flow

ENTER entering a region

EXIT leaving a region

MPI

MPICEXIT leaving anviPI collective communication operation including a barri
pP2pP (abstractiMpl point-to-point communication

SEND sending a message

RECV receiving a message

OpemmpP

TEAM (abstract) change of parallelism

FORK starting a parallel region

JOIN terminating a parallel region

SYNC (abstract) lock synchronization

ALOCK lock acquisition

RLOCK lock release

Attribute Description

cedgenptr least recenENTER event visiting the parent call path
cnodeptr least recenENTER event visiting the same call path
csite call site

enterptr ENTER event of the enclosing region instance

loc location

pos relative position (1-n) within the event trace

reg region

time time stamp

type event type

MPI

com communicator associated with a communication operation
dest destination location of a message

length message length

recvd bytes received during a collective operation

root root location of armPI collective operation

send ptr SEND event to a giverRECV event

sent bytes sent during a collective operation

src source location of a message

tag message tag

OpempP

forkptr FORK event to a giveoIN event

lock.id identifier of the lock object used for synchronization
lockptr SYNC event that performed the last change of a lock’s ownershipist

2.3 Higher-Level Abstractions

To simplify the development of trace-analysis to@sRL provides the following higher-level ab-
stractions that are useful to easily identify related event

e Pointer attributes

e Execution states

Pointer attributes, the first class of higher level absibast are event attributes that refer to another
related event. For example, the attribsendptrpoints from arReECV event to the corresponding
SEND event. In Figure 2, pointer attributes are printed in boldefa They can be identified in
Table 1 by a name ending in “ptr”.

The second class of higher-level abstractions reflecterdiit aspects of the program’s overall ex-
ecution state. The overall execution state consists of afs@omponent) states, each of which
represents one aspect of the overall state, such as théazklls the message queusRL models
each component state as a set of events. These sets aresst¢qansformed by the sequence of
events making up the trace file. That is, an event causesatsasition altering the event set
representing the component state by either removing elisnaewl/or adding itself to the set. Thus,
for every component state, an event trace definstat® sequenceThe initial state is always the
empty set. Transition rules define how a state is transforoyegth event into its successor state.

For example EARL maintains a region (call) stack for every location. Theiaistack is empty.
Whenever areENTER event occurs, it is added to the stack, and whenevearxan event occurs,
the correspondingNTER event is removed from the stack. Note that the state setedelty stack
structure from the implicit ordering of events. For moreimhation on the underlying theory please
refer to [5]. EARL provides the following state information:

e One region stack per location that remember€altER events of active region instances at
a location.

e One inherited region stack per location that remembermsnatER events of active region in-
stances at a given location. If the location representsva shmead EARL adds the (inherited)
region stack of the corresponding master at the time wheprbeess starts multi-threaded
execution (i.e., the time of the precedirgRK event). This is needed to track the stack of a
slave all the way up to the main function even if it was creaechewhere in the middle of
execution.

e One message queue per location psiic,(des) that remembers alEND events of messages
currently being transferred frosrcto dest According to the restriction thatpi statements
are only allowed to be executed by the master thread, therenassage queues only for
source and destination locations that represent mastadbr

e All MPICEXIT events belonging to the same instance ofvamn collective communication
operation including a barrier that has just been completed.

e All oMPCEXIT events belonging to the same instance of an @peparallel construct that
has just been completed.

e The call tree encoded as the seE6ITER events having visited a certain call path for the first
time.

3 C++API

Before using the C+#PI, you need to includeear | . h> in your source code, which will be located
in the following directory after installingoJAK:

$(PREFI X) /i ncl ude/ ear |

To generate an executal#arL application, you also need to link against #rrL and theEPILOG
base library:

-L$(PREFIX)/1ib -learl -lelg.base

3.1 classEventTrace

This class provides random access to all events in the tledadluding the execution state at the
time of a given eventEARL includes buffer mechanisms to minimize the number of fileeases
and to make unavoidable file accesses faster when retriayiagticular event.

The class also provides information on program and systemurees involved in the program
execution. Program and system resources consist of regialissites, machiness{pP) nodes,
processes and threadgpl communicators, Cartesian topologies and metrics. Exagphddes,
and threads, all resources have a unigue identifier betwerenandn — 1, with n being the total
number of resources of each type defined in the trace. Théfidewf nodes and threads is also a
number between zero and- 1, but it is local to the machine or process it belongs toranwduld be
the number per machine or process. A location is a tupkeching node processthread). There

is one location per thread, that is, a location representisead and also includes the upper-level
system resources the thread belongs to. Locations haveeaugigbal identifiers from zero to— 1,
wheren is the total number of locations (i.e., threads).

Events are assigned a relatpesitionfrom 1 ton. Execution states can refer to any event position
plus zero, which corresponds to the initial state.

Methods that take an identifier in order to return the cowadng object will throw an exception
of typeRunt i meErr or if no such identifier exists.

3.1.1 Constructor

Event Trace(std::string path);

Creates an event-trace object from BlILOG trace file, whose path name is supplied as
argument.

3.1.2 Methodsto access program and system resources

long get_nfiles() const;

Returns the total number of source-code files.

std::string get file(long file.id) const;

Returns the name of the file with identifier| e_i d.

[ong get _nregs() const;
Returns the total number of code regions.
Regi on* get _reg(long reg.id) const;
Returns the region with identifiereg_i d.

 ong get _ncsites() const;

Returns the total number of call sites.

Cal I site* get_csite(long csite_id) const;

Returns the call site with identifiesi t e_i d.

 ong get _nmachs() const;

Returns the total number of machines.

Machi ne* get _mach(l ong mach_i d) const;

Returns the machine with identifieach_i d.

[ong get _nnodes() const;

Returns the total number of§1P) nodes across all machines.

Node* get _node(long mach_id, |ong node_.id) const;

Returns the gMP) node with machine-specific identifierode_i d belonging to machine
mach_i d.

[ong get _nprocs() const;

Returns the total number of processes used during execution

Process* get _proc(long proc_id) const;

Returns the process with identifigroc_i d.

[ong get_nthrds() const;

Returns the total number of threads across all processdslusiag execution.

Thread* get _thrd(long proc_.id, long thrd.id) const;

Returns the thread with process-specific identifterd_i d belonging to process oc_i d.

Location* get_loc(long loc.id) const;

Returns the location with identifi¢oc_i d.

[ong get _ncoms() const;

Returns the total number ofPI communicators.

Conmmruni cat or* get _con(| ong comid) const;

Returns thevpl communicator with identifiecom.i d.

 ong get _ncarts() const;

Returns the total number of Cartesian topologies.

Cartesian* get _cart(long cart_id) const;
Returns the Cartesian topology with identifoar t _i d.

voi d get _coords(std::vector<long>& out, long cart_id, long loc.id) const;
Returns inout the coordinates of the location with identifiesc_i d in the Cartesian topol-
ogy with identifiercart _i d. The coordinates are specified by vectot in the order of
dimensions (i.e., first dimension first, etc.).

Location* get_loc(std::vector<long>& in, long cart_id) const;
Returns the location at given coordinates in the Cartesipalogy with identifiercart _i d.
The coordinates are specified by vectarin the order of dimensions (i.e., first dimension
first, etc.).

[ong get _nmets() const;

Returns the number of metrics defined in the trace.

Metric* get_met(long met_id) const;
Returns the metric with identifieret _i d.

3.1.3 Methodsto access events

 ong get _nevents() const;

Returns the total number of events in the trace (i.e., thebmurof event positions).

Event event(long pos);

Returns the event at positiggos. Note that the event object is not returned as a pointer
because it is a smart object containing only a references $8etion on classvent for more
details.)

3.1.4 Methodsto query the execution state

All methods to query the execution state have an output petemof typest d: : vect or <Event >&
which returns a list of events in ascending chronologicalear The list reflects the state at the
moment immediately after the event at positpms took place. The input parametgrs can be any
number between zero and the total number of events. If zespdsified, the methods will return
the initial state, which is always empty.

voi d stack(std::vector<Event>& out, long pos, long loc.id);

Returns inout all ENTER events belonging to active region instances at locatiaoi d,
which corresponds to the (region) call stack at this locatio

void istack(std::vector<Event>& out, long pos, long loc.id);

Returns inout the result ot ack() if | oc_i d is a master thread. Ifoc_i d is a slave thread,
i stack() adds (i.e., inherits) the stack of the master at the time wherprocess starts
multi-threaded execution (i.e., the time of the precediogk event).

voi d queue(std::vector<Event>& out, |ong pos,
long src_id = -1, long dest_id = -1);

Returns inout all SEND events of messages currently in transit from locaon_i d to
locationdest _i d. Specifying- 1 for one of the end points is interpreted as from any or to any
location.

voi d npicoll(std::vector<Event>& out, |ong pos);

Returns inout all npi cexit events belonging to an instance ofiaiCEXIT collective com-
munication operation or a barrier that has been completdteogvent at positiopos. If the
event at this position did not complete such an operation,is left empty.

voi d onpcol | (std::vector<Event>& out, |ong pos);

Returns inout all onpcexit events belonging to an instance obpervp parallel construct
or a barrier that has been completed by the event at pogitionif the event at this position
did not complete such an operatiaut is left empty.

3.1.5 Methodsto query thecall tree

Similar to the call stack, the call tree is also consideredraaspect of the execution state. The
call tree is empty at the beginning and evolves as executiogresses. The results returned by the
methods taking a position parameter do not reflect any pwrtiad the trace following the event at
the specified position. Specifyindl as the position is equivalent to specifying the last pasitio
Only methods that do not need a position parameter autoafigtieflect the entire trace. Note that
those methods may requieaRrL to read the entire trace file.

The call tree is modeled as the seteTER events that visit a call path the first time during the
entire run regardless of the location. That is, there is only call tree for all locations. A call-tree
node is arENTER event which is part of the call tree. The call tree may havetigial roots, for
example, if a parallel program was started using multipfeedint executables. Note that the call
tree consists of a subset of @NTER events. The functions listed below that require a parameter
namedcnode, expect the position of aBNTER event that is part of this subset.

Thecnode ptrattribute of arENTER event points to theNTER event that visited the current call-tree
node the fist time. Thus, a member of the call tree can be ddsihfified by acnode ptrattribute
pointing to itself. While thecnode ptrattribute points to the current node, tbedgeptrattribute
points to the parent node.

void calltree(std::vector<Event>& out, long pos = -1);

Returns inout all ENTER events belonging to the call tree.

void ctroots(std::vector<Event>& out, long pos = -1);

Returns inout all ENTER events representing roots of the call tree.

void cal | path(std::vector<Event>& out, long cnode);
Returns inout the sequence of call-tree nodes (iEN;TER events) from the root to the node
with positioncnode.

void ctchildren(std::vector<Event>& out, |long cnode);

Returns inout the child nodes (i.eENTER events) of the node with positiamode.

long ctvisits(long cnode);

Returns the number of times the call-tree node with positimte was visited.

long ctsize(long pos = -1);

Returns the size of the call tree as the number of events tloaidwbe returned by
calltree().

3.2 classEvent

This class represents an event and provides methods tcsamesd attributes. The class covers all
event types, and there are no subclasses accessible toetheTaging to access an attribute that
this not defined for the type of a particular event will resalNULL being returned if the attribute
value is supposed to be an objedt,if it is supposed to be an integer number, or a null event, (i.e.
an event with an empty reference) if it is supposed to be anteVghich attributes are defined for
which event type can be seen in Figure 2.

From the programmer’s viewpoint, the type of an event hasrepoesentations: a string represen-
tation and an enumeration type representagioype. The former one uses a string identical to the
type name used in Figure 2 (e.g.,ENTER '). The latter use an enumeration constant whose name
is identical to the string constant (e.GNTER).

To minimize the runtime and storage overhead of copyingamss of this class maintain only a
reference to the actual object representation, whiclf itseludes a reference counter to control its
life cycle. The behavior of all methods is defined as long &sEttent Trace object from where
the event was retrieved exists. An event without a validregfee to an event object is calledhall
event To check whether an event is a null event, use the null() agkth

3.2.1 Event attributes

| ong get _pos() const;
Returns the relative position of the event.

Location* get_loc() const;
Returns the location of the event.

doubl e get _time() const;
Returns the time stamp of the event.

etype get _type() const;
Returns the event type’s enumeration type representation.

10

std::string get_typestr() const;

Returns the event type’s string representation.

bool is_type(etype type) const;
Returns true if the event type is the same as or a subtype ofisupplied as argument and
false otherwise.

Regi on* get _reg() const;
Returns the region entered or leftMiLL if the event has no region attribute.

Callsite* get_csite() const;

Returns the call site of aBNTER event. Since the call site attribute is optional ENTER
events, arENTER event may also returNULL. If the event is ncENTER event, this method
returnsnul | .

Location* get_src() const;

Returns the sender’s location of a message.

Location* get_dest() const;

Returns the receiver’s location of a message.

Communi cat or* get _con() const;

Returns the communicator of a4P1 communication operation.

 ong get _tag() const;
Returns the message tag.

long get_length() const;
Returns the message length in bytes.

Location* get_root() const;

Returns the root location of anPi collective communication operation.

 ong get _sent() const;

Returns the number of bytes sent duringvemn collective communication operation.

[ong get _recvd() const;

Returns the number of bytes received duringvem collective communication operation.

l ong get _lock.id() const;

Returns the lock identifier of thepervp lock accessed by the event. Please note that the

identifier is only used to distinguish between differentkiac There are actually no lock
objects inEARL. Also note that lock identifier do not need to be unique acdifferent
processes.

[ong get _nmets() const;

11

Returns the number of metrics carried by the event. Therretalue will be either zero or
equal to the total number of metrics.

std::string get_nmetnanme(long i) const;

Returns the name of metric with identifier If this metric is not defined, &unt i meErr or
exception is thrown.

doubl e get _metval (long i) const;

Returns the value for metric with identifier If this metric is not defined, Bunt i meErr or
exception is thrown.

3.2.2 Pointer attributes

Event get_enterptr() const;

Returns th&eNTER event of the currently active region instance. In the casmelxiT event,
this is the correspondingNTER event. If there is no enclosing region instance, a null eient
returned.

Event get _cnodeptr() const;

Returns theeNTER event that has visited the current call path the first timamigss of the
location. The event returned represents the call-tree aodently visited.

Event get _cedgeptr() const;

Returns th&NTER event that has visited the parent call path the first timesscadl locations.
The event returned represents the parent node of call-tiée currently visited. If there is
no parent node, a null event is returned. You can use the mudithod to check whether the
event returned is a null event.

Event get _sendptr() const;
Returns theseEND event of the message received byecv event.

Event get_l ockptr() const;

Returns thesYNC event that accessed the saopervp lock object immediately before the
current event. If the lock was never accessed before, avedités returned. You can use the
null() method to check whether the event returned is a nalhtv

Event get _forkptr() const;
Returns theoRK event generated at the beginning of a parallel region clogedoIN event.

3.2.3 Miscellaneous

bool null() const;

Returns true if the event object is a null event (i.e., dodgpoot to a valid event representa-
tion) and otherwise false.

Also, the class supports comparison operatsts =, <, >, <=, and=> that compare events based on
their position, which means they only provide meaningfiglufes when applied to events from the
same trace, since the position is only comparable acrossathe event trace.

12

33

class Region

This class represents a source-code region. A region isictesized by a name, a file where it is
defined, begin and end line numbers, a description, andgisméype.

| ong

std::

std::

[ong

[ong

std::

std::

get _id() const;
Returns the region identifier.

string get _name() const;
Returns the region name.

string get _file() const

Returns the name of the file where the region is defined. Ifitiicgmation is not available,
" UNKNOWN' is returned.

get _begl n() const;
Returns the begin line number. If the this information is anilable,- 1 is returned.

get _endl n() const;
Returns the end line number. If the this information is natilable,- 1 is returned.

string get _descr() const;
Returns the region description.

string get_rtype() const;
Returns the region type, which can be one of the followinipgs:

" FUNCTI ON'

" LOoP"

"USER_.REG ON' (user defined region)

" OVP_PARALLEL"

" OWP_LOOP" (for/do construct)

" OMP_SECTI ONS" (sections construct)

" OMP_SECTI ON' (individual section inside a sections construct)
" OVP_WORKSHARE"

" OWP_SI NGLE"

" OWP_MASTER'

" OVP_CRI Tl CAL"

"OWP_ATOM C'

" OWP_BARRI ER'

" OMP_I BARRI ER" (implicit barrier)

" OVWP_FLUSH'

" OMP_CRI Tl CAL_SBLOCK" (body of critical construct)
" OMP_SI NGLE_SBLOCK" (body of single construct)

" UNKNOM'!

13

3.4 classCallsite

A call site is a line within a file where the control flow can mdvem one region to another.
long get_id() const;
Returns the call-site identifier.

std::string get _file() const;
Returns the name of the file.

long get_line() const;
Returns the line number.

Regi on* get _cal l ee() const;

Returns the region to which the control flow can move from tlmeent region.

3.5 classMetric

A metric has a name and a description. It can represent an event, an event rate, or a sample
value. An event count or rate always refers to a measuremewval, whereas a sample refers
to a distinct point in time. Although for simplicitgARL returns every metric as a doublearL
indicates whether the value is meant to be an integer or arftppbint value. If the metric values
refer to an intervalEARL indicates how the interval is computed. Please also readebiion on
performance metrics in thePILOG specification.

long get_id() const;
Returns the metric identifier.

std::string get_name() const;
Returns the metric name. Note theILOG specifies predefined names for common hardware
counters. Please refer to theiLOG specification for details.

std::string get_descr() const;

Returns the metric description.

std::string get_type() const;

Tells whether the metric is an integer or a floating-point bemby returning one of the
following string constants:

" | NTECER'
" FLOAT"

std::string get_mode() const;

Tells whether the metric represents an event count, an esentor a sample by returning one
of the following string constants:

" COUNTER'

14

n RATEII
" SAMPLE"

std::string get_ival () const;

If the metric represents an event count or rate, this metliwhich interval the values refer
to by returning one of the following string constants.

"START": interval since start of measurement on a location
"LAST": interval since last measurement on a location
"NEXT": interval to next measurement on a location

If the metric represents a sampl&ONE" is returned.

Important: Note that theepILOG library version 1.1 only generates metric information gbey
" COUNTER'/ " | NTEGER" measured fromi START".

3.6 classLocation

A location is a tuple consisting of a machine, a node, a pmy@w a thread. There is a one-to-one
mapping between locations and threads. A location is bésiaahread plus information on the
upper levels of the system hierarchy.

long get_id() const;

Returns the unique location identifier.

Machi ne* get _mach() const;

Returns the machine.

‘ Node* get _node() const;

Returns the node.

Process* get _proc() const;

Returns the process.

Thread* get _thrd() const;

Returns the thread.

3.7 classMachine

The machine class constitutes the top level of the systeraroley. A machine consist of multiple
nodes.

long get_id() const;

Returns the unique machine identifier.

std::string get_name() const;

15

Returns the machine name. If there is no name specified, theohesturns' UNKNOMWN' .

 ong get _nnodes() const;

Returns the number of nodes associated with the machine.

Node* get _node(l ong node_id) const;

Returns the node with the identifirode_i d. node_i d is unique only within the machine and
is a number between zero and- 1, wheren is the number returned tget _nnodes() .

3.8 classNode

A node is a physical part of a machine usually with a singleresiklspace and one or mareus.
It can host a subset of an application’s processes. A nodadgsiely identified by the identifier of
the machine the node belongs to in combination with the nm&eltical node identifier.

[ong get _mach_id()

Returns the identifier of the machine the node belongs to.

| ong get _node_id() const;

Returns the node identifier. This identifier is local to thechiae the node is associated with.

std::string get_name() const;
Returns the node name. If there is no name specified, the chedharns' UNKNOWN' .

[ong get _ncpus() const;
Returns the number afPus. Please note that the event trace might not contain the real
number ofcpus, but a number greater or equal to the actual number usectlapiication.
doubl e get _clckrt() const;
Returns the clock rate of the node in cycles per second orizinig information is unavail-
able.
Machi ne* get _mach() const;

Returns the machine the node belongs to.

[ong get _nprocs() const;

Returns the number of processes hosted by the node.

3.9 classProcess

A process may spawn multiple threads. A process has at leaghcead.
long get_id() const;

Returns the unique process identifier. 1 applications, the process identifier is equal to
the rank inMPl _COVM WORLD.

16

std::string get_name() const;

Returns the process name. If there is no name specified, th®dieturns UNKNOWN' .

Node* get _node() const;

Returns the node the process belongs to.

[ong get _nthrds() const;

Returns the number of threads spawned by the process.

Thread* get _thrd(long thrd.id) const;
Returns the thread with the identifihr d_i d. t hr d_i d is unique only within the process and
is a number between zero and- 1, wheren is the number returned tget _nt hrds() .
Location* get_loc() const;

Returns the location corresponding to thread zero.

3.10 classThread

A thread is uniquely identified by the identifier of the praxzéise thread belongs to in combination
with the process-local thread identifier.

long get _thrd.id() const;

Returns the thread identifier. This identifier is local to thachine the node is associated
with. For opervp applications, the thread identifier is equal to the threaulrer returned
by omp_get _t hr ead_nun{() . Note that neitheEARL nor EPILOG support nested thread paral-
lelism.

 ong get _proc_id() const;

Returns the identifier of the process the thread belongs to.

std::string get_name() const;

Returns the thread name. If there is no name specified, tHeoohedturns’ UNKNOMN' .

Process* get _proc() const;

Returns the process the thread belongs to.

Location* get_loc() const;

Returns the location of the thread.

3.11 classCommunicator

EARL represents a communicator as a group of processes with arirmydiefined by the rank of
each process.

long get_id() const;

17

Returns the uniqgue communicator identifier.

| ong get _rank(Location* |oc) const;

Returns the rank of a location’s process within the comnainic If the location is not part
of the communicator, an exception of tyRent i meErr or is thrown.

[ong get _nprocs() const;

Returns the size of the communicator.

Process* get _proc(long rank) const;

Returns the process that corresponds to raamik.

3.12 classCartesian

A virtual Cartesian topology is defined as an n-dimensioratésian grid. The Cartesian grid may
have one or more locations (i.e., processes or threadsrindimension. Moreover, the Cartesian
grid may or may not be periodic in each dimension. There iseatorone mapping between the
locations in the topology and its coordinates in the Caategrid. The coordinates are specified as
a vector of integers 8 (n— 1) with n being the number of locations in the respective dimension.
The order of the vector elements corresponds to the ordenmargsions.

long get_id() const;

Returns the unique Cartesian topology identifier.

[ong get _ndims() const;

Returns the number of dimensions in the grid.

voi d get _dimv(std::vector<long>& out) const;

Returns inout the number of locations in each grid dimension. Note thatthe ofout is
equal to ndims.

voi d get _periodv(std::vector<bool >& out) const;

Returns inout the periodicity in each grid dimension. Note that the sizeuwf is equal to
ndims. A boolean value of true indicates that the dimensqgreriodic.

voi d get _coords(std::vector<bool >& out, Location* [oc) const;

Returns inout the coordinates of the locatidroc in the Cartesian grid. Note that the size of
out is equal to ndims.

Location* get_l oc(std::vector<|long>& coordv) const;

Returns the location corresponding to the coordinategsemted bygoor dv in the Cartesian
grid.

18

3.13 classP2Statistics

This class integrates some basic statistical functions déta set and can be used to calculate
quantiles of a very large number of values like the execuiimres of all instances of a particular
region or the sizes of messages. The quantiles are estitatgsuted with thé?? algorithm [2]
which makes it unnecessary to store the complete data sais, Tie size of afP2Statistic
object is very small and always constant. Use ofRR@lgorithm is the reason for naming the class
P2Statistic.

3.13.1 Constructor

P2Statistic();

Creates a statistics object.

3.13.2 Methodsto manage the data set

voi d add(doubl e val);

Adds a numeric value to the data set.

void reset();

Reinitializes the object. After applying this operatioe tata set is empty again.

[ong count() const;

Returns the cardinality of the data set, i.e. the number lolegadded so far.

3.13.3 Quantiles

doubl e ned() const;

Returns the median of the data set. The return value is amasticomputed with the?
algorithm. Requires at least five elements in the data set.

doubl e g25() const;

Returns the 25% quantile of the data set. The return value éstimate computed with the
P? algorithm. Requires at least five elements in the data set.

doubl e q75() const;

Returns the 75% quantile of the data set. The return value éstimate computed with the
P2 algorithm. Requires at least five elements in the data set.

19

3.13.4 Miscellaneous

double mn() const;
Returns the minimum of the data set. This operation regairésast one element in the data
set.

doubl e max() const;
Returns the maximum of the data set. This operation reqairkemst one element in the data
set.

doubl e mean() const;
Returns the mean value of the data set. This operation esyairleast one element in the
data set.

doubl e sum() const;
Returns the sum of the elements in the data set. This openatuires at least one element
in the data set.

doubl e var() const;

Returns the variance of the elements in the data set. Thistqe requires at least one
element in the data set.

3.14 Exceptions

EARL provides two different exception classesnti neError andFat al Error, which are both
subclasses of clagsr or . A runtime error is thrown if a method is used the wrong wayeiample,

by supplying undefined parameters. When a run-time errdw@n, the operation has failed, but
the trace object is still usable. If a fatal error is throwme trace object has been corrupted and
cannot be used anymore. Both classes provide a method fo albtarror message, which in most
cases will deliver the name of the internal operation thiteda

std::string get_nsg() const;

Returns an error message associated with the exception.

3.15 Example

The following small example illustrates how to use garL C++ API. The program iterates through
the event trace whose name is specified as a command-lin@mangand prints the location identi-
fier and the type of each event.

#incl ude <earl.h>
#i ncl ude <i ostreanp

usi ng nanespace earl;
usi ng nanespace std;

20

int main(int argc, char* argv[])

{
try {
/1 open trace file
Event Trace trace(argv([1]);
/] iterate through the trace
for (int i =1; i <= trace.get_nevents(); i++) {
Il retrieve event i
Event event = trace.event(i);
Il print the event’s location and type
cout << event.get loc()->get id() << ": "
<< event.get _typestr() << endl
}
}

catch (Error error) {

[l print error nmessage and exit
cerr << error.get_msg() << endl;
exit (EXI T_FAI LURE) ;
}
}

4 Buffer Mechanisms

While reading events from the trace filyRL dynamically builds up a sparse index structure. State
information is stored at fixed intervals in so-called bookksao speed up random access to events.
If a particular event is requestedARL usually need not start reading from the beginning of the
trace file in order to find it. Instead, the interpreter looks the nearest bookmark and takes the
state information required to correctly interpret the sghgent events from there. Then it starts
reading the trace from that position until it reaches tharddsvent. The distance of bookmarks
can be set using the following environment variable:

EARL _BOOKMARK_DI STANCE (default: 10000)

To gain further efficiencyeARL automatically caches the most recently processed evertgin
history buffer. The history buffer always contains a comtigs subsequence of the event trace and
the state information referring to the beginning of thisseduence. Thus, all information related to
events in the history buffer can be completely generated ftee buffer including state information.
The size of the history buffer can be set using another emvienmt variable:

EARL_H STCRY_SI ZE (default: 1000 * number of locations)

Note that choosing the right buffer parameters is usuallpdetoff decision between access effi-
ciency and memory requirements. In particular, for verygltnaces with many events or very wide

21

traces with many processes or threads, a readjustmentsgf fa@ameters might be recommended.

5 Python API

The PythonaPpi is a wrapper around the C+apP| that has been generated usigngyIG [3]. The
main advantage of the Python interface is that it enableisl iaqototyping as well as interactive
programming. To install the files needed for the Python fater, follow the steps explained in
the KOJAK installation instructions. Before using it, make sure thatir PYTHONPATH includes
the KOJAK library directory$PREFI X/ | i b. After completing these steps, you can @zeL from
Python by importingeARL using the Python import command.

fromear| inmport *

t = EventTrace("trace.elg") # open trace file

for i inrange(l, t.get _nevents()): # iterate through the trace
print e # print event i

del t # close trace file

5.1 Differences between the C++ and Python API

The easiest way to become familiar with the Pytheml is to use it interactively from the
Python shell. The Pythonpr! differs form the C++AP! in that only the classeBvent Trace and
P2Stati stics have a corresponding Python classes. Objects of all othese$ are represented
as Python dictionaries. The dictionary keys correspond-i® @ethod names and the dictionary
values to the C++ methods’ return values.

The dictionaries are not nested. Instead, references & oljects are expressed using identifiers.
For example, a C+tocat i on object holds pointers to a machine, a node, a process, amdath
The equivalent Python dictionary would hold a machine iifient a node identifier, a process iden-
tifier, and a thread identifier.

>> print t.get loc(1)
{"thrd_id: 2, "mach_id": 0, 'node_id: 0, "id: 3, 'proc_id: 0}

In most cases, you can translate from the C++ method name ®@ton dictionary key simply by
using the method name without the precedjag_. Python attributes holding an identifier generally
end with_i d. -1 is used to indicate the absence of a certain object. Also, i@ethods taking an
argument are not represented in the dictionary. Table 2 distitBe Python dictionary keys used to
resemble the C++ methods of the various object types.

Events. In dictionaries representing events, pointer attributeseaipressed in terms of event po-
sitions. That is, wherever a method of C++ clagsnt returns an object of typevent , the Python
dictionary contains only the event’s position. Null eveaits represented a4.

>>> t. event(32)
{"reg id: 69, 'loc_id: 15, 'csite_id: -1, 'cedgeptr': 1,

22

Table 2: Python dictionary keys representing event atietau

Event

cedgeptr position of the least receBNTER event visiting the parent call path

cnodeptr position of the least receBNTER event visiting the same call path

csitelid call site identifier

enterptr position of theeENTER event of the enclosing region instance

loc.id location identifier

pos relative position (1-n) within the event trace

reg.id region identifier

tinme time stamp

type event type as a string

< metname> value of metric< metname>

MPI

comid identifier of the communicator associated with a commuidoabperation

dest_id destination location identifier of a message

[ength message length

recvd bytes received during a collective operation

root _id root location identifier of amp1 collective operation

sendptr position of theSEND event to a giverRECV event

sent bytes sent during a collective operation

src_id source location of a message

t ag message tag

OpemnpP

forkptr position of theFORK event to a givernoIN event

| ock_id identifier of the lock object used for synchronization

| ockptr position of thesyNcC event that performed the last change of a lock’s oywn-
ership status

"time': 0.11698729544878006, 'enterptr’': 28, 'type’: 'ENTER,
"pos’: 32, 'cnodeptr’: 3}

As shown here, the event attributes referring to other ¢bjerst contain their identifiers. Table 3
includes a list of all dictionary keys representing evetritaites. Also, metric values carried by an
event can be accessed using the metric name as the key.

Event vectors. Some methods of the C++ claggent Trace use an output argument of type
std::vector<Event> to return a list of events. The equivalent Python method amgsise an
output parameter. Instead, a Python list with event pasitie returned. The events themselves can
be obtained later using tleent () method.

>>> t.stack(100, 0)
[2, 94]

23

MPI communicators Communicators are represented in Python as lists holdimgoprmore
process identifiers. Hence, wherever a pointer to a comratoriobject is returned in C++, a list
with process identifiers is returned in Python.

Table 3: Python dictionary keys corresponding to C++ method

Python dictionary keys corresponding to C++ methods
Metric

id metric identifier
nane metric name
descr metric description
type metric data type
mode metric mode

i val metric interval
Callsite

id call-site identifier
file file name

line line number
callee.id identifier of the callee region
Region

id region identifier
narme region name

file file name

begl n begin line number
endl n end line number
rtype region type

descr region description
Machine

id machine identifier
nane machine name
nnodes number of nodes
Node

mach_i d machine identifier
node_i d node identifier
nane node name

ncpus number ofcpPus

cl ckrt clock rate

nprocs number of processes
Process

id process identifier
nane process name

nt hrds number of threads
loc_id location identifier of the master thread
node_i d node identifier
Thread

proc_id process identifier
thrd.id thread identifier

24

Python dictionary keys corresponding to C++ methods (cont.)

nanme thread name

loc.id location identifier

Cartesian

id Cartesian topology identifier

ndi s number of dimensions

di nv list containing the number of locations in each dimension

peri odv list containing the periodicity of the Cartesian grid in katmension. The
booloean valuér ue in C++ is translated to the valdeandf al se is trans-
lated to the valu@

6 Revision History

This section describes the difference between revisiotisadARL API.

6.1 Revision 2.1

The changes include the provision of various modules andtifums which helpearL read and
interpret topology-related definition records in #®LOG trace format.

e ClassCart esi an representing an n-dimensional Cartesian grid added.

e Methods to access Cartesian topologies added to classTEaeat

References

[1] G. Booch, J. Rumbaugh, and I. Jacobs®he Unified Modelling Language User Guid&ddi-
son Wesley, October 1998.

[2] R. Jain and . Chlamtac. Thie? Algorithm for Dynamic Calculation of Quantiles and His-
tograms Without Storing ObservationrSommuncations of the ACM8(10), October 1985.

[3] SWIG. Simplified Wrapper Interface Generatot.t p: / / www. sw g. or g/ .

[4] F. Wolf. EARL - Eine programmierbare Umgebung zur Bewad paralleler Prozesse auf
Message-Passing-Systemen. Master’s thesis, RWTH Aaétoeschungszentrum Jalich, Jul-
Bericht 3551, June 1998.

[5] F. Wolf. Automatic Performance Analysis on Parallel Computers BithP NodesPhD thesis,
RWTH Aachen, Forschungszentrum Julich, February 2008NIS-00-010003-2http://
www. f z-j uel i ch. de/ ni c- series/vol unel7/.

[6] F. Wolf and B. Mohr. Automatic performance analysis obhg MPI/OpenMP applications.
Journal of Systems Architectr49(10-11):421-439, 2003. Special Issue “Evolutions i@jpa
lel distributed and network-based processing”.

25

[7] F. Wolf and B. Mohr. EPILOG Binary Trace-Data Format. aital Report FZJ-ZAM-IB-
2004-06, Forschungszentrum Julich, May 2004.

[8] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient leatt Search in Large Traces through
Successive Refinement. Rroc. of the European Conference on Parallel Computing ¢eur
Par), Lecture Notes in Computer Science, Pisa, Italy, Augusipt&eber 2004. Springer.

26

