
CUBE
User Manual

Version 1.0 / September 29, 2004

Fengguang Song, Felix Wolf

Copyright (C) 2004 University of Tennessee

Contents

1 Introduction 3

2 Installation 4
2.1 Platforms . 4

2.2 Installing CUBE . 5

2.3 Installing CUBE Library only .. 5

2.4 License . 5

2.5 Libraries Required . 6

3 Using the Display 6
3.1 Basic Principles . 6

3.2 GUI Components . 8

3.2.1 Tree Browsers . 8

3.2.2 Menu Bar . 8

3.2.3 Color Legend . 10

3.2.4 Status Bar . 10

4 Creating CUBE Files 11
4.1 CUBE API . 11

4.1.1 Metric Hierarchy . 11

4.1.2 Call-Tree Hierarchy . 12

4.1.3 Location Hierarchy . 12

4.1.4 Severity Mapping . 13

4.2 Typical Usage . 14

1 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a generic presentation component suit-
able for displaying a wide variety of performance metrics for parallel programs including
MPI [1] and OpenMP [2] applications. CUBE allows interactive exploration of a multidi-
mensional performance space in a scalable fashion. Scalability is achieved in two ways:
hierarchical decomposition of individual dimensions and aggregation across different di-
mensions. All performance metrics are uniformly accommodated in the same display and
thus provide the ability to easily compare the effects of different kinds of performance
behavior.

3

CUBE has been designed around a high-level data model of performance behavior called the
CUBE performance space. TheCUBE performance space consists of three dimensions: a set
of metricsM , a set of call pathsC, and a set of locationsL. The metric dimension contains
performance metrics, such as communication time or cache misses, the call path dimension
contains all the call paths forming the call tree of the program, and the location dimension
contains all the control flows of the program, which can be processes or threads depending
on the parallel programming model. Each point(m, c, l) of the space can be mapped onto a
number representing the actual measurement for metricm while the program was executing
call pathc at locationl. This mapping is called theseverity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric
dimension is organized in an inclusion hierarchy, for example, execution time includes
communication time. Second, the call-path dimension is organized in a call-tree hierarchy,
since every call path is a node in the call tree. Finally, the location hierarchy is organized
in a multi-level hierarchy consisting of the levels grid, machine,SMP node, process, and
thread.

CUBE also includes a library to read and write instances of the previously described data
model in the form of anXML file. The file representation is divided into a metadata part
that describes the specific structure of the different dimensions and a data part that contains
the severity numbers onto which the elements of the performance space are mapped.

The display component can load such a file and display the different dimensions of the per-
formance space using three coupled tree browsers (Figure 1). The browsers are connected
so that the user can view one dimension with respect to another dimension. For example,
the user can click on a particular metric and see its distribution across the call tree. In addi-
tion, the display is augmented with a source-code display that shows the exact position of
a call site in the source code.

The following sections will explain how to installCUBE, how to use the display, and also
how to writeCUBE files.

2 Installation

CUBE is available as a source-code distribution. You can use the link http://icl.cs.
utk.edu/ to downloadCUBE. There are two options to installCUBE: full installation
and installation of the library only. The current version ofCUBE 1.0 is able to run on all
majorUNIX variants.

2.1 Platforms

CUBE currently supports all majorUNIX platforms on which wxWidgets and libxml2 are
available. Note that libxml2 or wxWidgets may require a specific compiler on some plat-

4

forms.

2.2 Installing CUBE

The full installation includes theCUBE library to write aCUBE file, and theCUBE display
component to display its contents.

1. gunzip cube.tar.gz | tar xvf

2. cd cube-xxxx

3. EditMakefile.defs

• Set variablePREFIX to your desired installation path.

• Choose an appropriate compiler for your system (e.g.,gcc or xlC).

4. make

5. make install

2.3 Installing CUBE Library only

The partial installation will only install theCUBE library on your system. This is intended
for users who just need to write their performance data to aCUBE file, but don’t need to
display it on their machines.

1. Same as steps of 1 to 3 described in the above section.

2. make lib

3. make install-lib

2.4 License

This software is free but by downloading and using it you automatically agree to comply
with the license agreement. You can read the fileLICENSE in the distribution for precise
wording.

5

2.5 Libraries Required

Both libraries listed below are necessary for using theCUBE display component. For those
users who need theCUBE library only, only libxml2 is required to be installed.

• LIBXML 2: an XML C parser and toolkit developed for the Gnome project. It is
preinstalled on many systems. Please refer to the libxml2 web page for details:

http://xmlsoft.org/

• WXWIDGETS: a cross-platform C++ framework for writing advanced GUI applica-
tions using native controls. Please refer to the wxWidgets web page for details:

http://www.wxwindows.org/

3 Using the Display

This section explains how to use theCUBE display component. After a brief description of
the basic principles, different components of theGUI will be described in detail.

3.1 Basic Principles

TheCUBE display consists of three tree browsers, each of them representing a dimension of
the performance space (Figure 1). The left tree displays themetric dimension, the middle
tree displays the call-tree dimension, and the right tree displays the location dimension. The
nodes in the metric tree represent performance metrics, thenodes in the call-tree dimension
represent call paths, and the nodes in the location dimension represent either a group of
machines, called agrid, a machine, a node, a process, or a thread.

Users can perform two types of actions: selecting a node or expanding/collapsing a node.
At any time, there are two nodes selected, one in the metric tree and the other in the call
tree. It is not possible to select a node in the location tree.

Each node is associated with a metric value, which is called the severity and is displayed
simultaneously using a numerical value as well as a colored square. Colors enable the easy
identification of nodes of interest even in a large tree, whereas the numerical values enable
the precise comparison of individual values. A value shown in the metric tree represents
the sum of a particular metric for the entire program, that is, across all call paths and all
locations. A value shown in the call tree represents the sum of the selected metric across
all locations for a particular call path. And a value shown inthe location tree represents the
selected metric for the selected call path and a particular location. Briefly, a tree is always
an aggregation of all of its neighbor trees to the right.

Note that all the hierarchies inCUBE are inclusion hierarchies, meaning that a child node
represents a part of the parent node. For example, the metrichierarchy might display cache

6

Figure 1:CUBE display window.

misses as a child node of cache accesses because the former event is a subset of the latter
event. Similarly, in Figure 2 the call pathmain contains the call pathsmain-foo andmain-
bar as child nodes because their execution times are included intheir parent’s execution
time.

The severity displayed inCUBE follows the principle ofsingle representation, that is, within
a tree each fraction of the severity is displayed only once. The purpose of this display
strategy is to have a particular performance problem to appear only once in the tree and,
thus, help identify it more quickly. Therefore, the severity displayed at a node depends
on the node’s state, whether it is expanded or collapsed. Theseverity of a collapsed node
represents the whole subtree associated with that node, whereas the severity of an expanded
node represents only the fraction that is not covered by its descendants because the severity
of its descendants is now displayed separately. We call the former oneinclusive severity,
whereas we call the latter oneexclusive severity.

 10 main

 30 foo

 60 bar

100 main

Figure 2: Node of the call tree in collapsed or expanded state.

For instance, a call tree may have a nodemain with two childrenmain-foo andmain-bar
(Figure 2). In the collapsed state, this node is labeled withthe time spent in the whole

7

program. In the expanded state it displays only the fractionthat is spent neither infoo nor
in bar. Note that the label of a node does not change when it is expanded or collapsed, even
if the severity of the node changes from exclusive to inclusive or vice versa.

3.2 GUI Components

The GUI consists of a menu bar, three tree browsers, a color legend, and a status bar. In
addition, each tree browser provides a context menu for eachnode, which can be used, for
example, to launch a source-code dialog.

3.2.1 Tree Browsers

The tree browsers are controlled by the left and right mouse buttons. The left mouse button
is used to select or expand/collapse a node. The right mouse button is used to pop up a
context menu with node-specific information for either a metric or a call path. For call
paths and source-code entities a source-code dialog is provided.

A label in the metric tree shows a metric name. A label in the call tree shows the last callee
of a particular call path. If you want to know the complete call path, you must read all
labels from the root down to the particular node you are interested in. After switching to
the region-profile mode (see below), labels in the middle tree denote modules or regions
depending on their levels. A label in the location tree showsthe name of its respective
location entity, such as a node name or a machine name. Processes and threads are usually
identified by a number, but it is possible to give them specificnames when creating aCUBE

file.

Note that both the metric tree and the call tree can have multiple root nodes. If there is only
one machine in the location tree, the grid level is not displayed. Similarly, the thread level
of single-threaded applications is hidden.

3.2.2 Menu Bar

The menu bar consists of three menus, a file menu, a view menu, and a help menu.

File
The file menu can be used to open and close a file and to exitCUBE.

View
The view menu can be used to switch from the call-tree mode to the region-profile
mode or to change to another way of severity representation (Figure 3).

After opening a file the middle pane shows the call tree of the program. However, a
user might wish to know which fraction of a metric can be attributed to a particular re-
gion regardless of from where it was called. In this case, theuser can switch from the

8

Figure 3:CUBE menu bar.

call-tree mode (default) to the region-profile mode (Figure4). In the region-profile
mode, the call-tree hierarchy is replaced with a source-code hierarchy consisting of
three levels: module, region, and subregions. The subregions, if applicable, are dis-
played as a single child node labeledsubregions representing all regions called from
a particular region. In this way, the user is able to see whichfraction of a metric is
associated with a region exclusively without its subregions (i.e., its callees).

The severity can be displayed in three different ways: as an absolute value (default),
as a percentage, and as a relative percentage. The absolute value is just the value as
it was measured. When displaying a value as a percentage, thepercentage refers to
the value shown at the root of the metric hierarchy in collapsed state.

However, both modes have the disadvantage that values can become very small the
more you go to the right, since aggregation occurs from rightto left. To avoid this
problem, the user can switch to relative percentages. Then,a percentage in the right
or middle tree always refers to the selection in the neighborto the left, that is, a
percentage in the location tree refers to the selected call path and a percentage in the
call tree refers to the selected metric instead of its root metric. Note that in this mode
the percentages in the middle and right tree always sum up to one hundred percent.
Figure 4 shows a region profile with relative percentages.

Note that in the absolute mode, all values are displayed in scientific notation. How-

9

ever, to prevent cluttering the display only the mantissa isshown at the trees, the
exponent is shown at the color legend.

Help
Currently, the help menu provides only an about dialog with release information.

3.2.3 Color Legend

The color is taken from a spectrum ranging from blue to red representing the whole range
of possible values. To avoid an unnecessary distraction, insignificant values close to zero
are displayed in dark gray. Zero values just have the background color. Depending on the
severity representation, the color legend shows a numeric scale mapping colors onto values.

3.2.4 Status Bar

The first column showingm × n indicates that there arem processes and for each process
there are at mostn threads in the execution.

Figure 4:CUBE region profile.

10

4 Creating CUBE Files

The CUBE data format in anXML instance [3]. The corresponding XMLSchema specifi-
cation [4] can be found indoc/cube.xsd in the CUBE distribution. TheCUBE library
provides an interface to createCUBE files. It is a simple class interface and includes only
a few methods. This section first describes theCUBE API and then presents a simple C++
program as an example of how to use it.

4.1 CUBE API

The class interface defines aclass Cube. The class provides a default constructor and
thirteen methods. The methods are divided into four groups.The first three groups are used
to define the three dimensions of the performance space and the last group is used to enter
the actual data. In addition, an output operator<< to write the data to a file is provided.

The methods used to create the different entities of the performance space always return
an identifier which can be used for further reference. Each entity has a different identifier
domain{0, . . . , n − 1}.

4.1.1 Metric Hierarchy

This group refers to the metric dimension of the performancespace. It consist of a single
method used to build metric trees. Each node in the metric tree represents a performance
metric. Metrics have different units of measurement. The unit can be either “sec” (i.e.,
seconds) for time based metrics, such as execution time, or “occ” (i.e., occurrences) for
event-based metrics, such as floating-point operations. During the establishment of a metric
tree, a child metric is usually more specific than its parent,and both of them have same unit
of measurement. Thus, a child performance metric has to be a subset of its parent metric
(e.g., system time is a subset of execution time).

int def met(string name, string uom, string descr,
int parent id)

Defines a new performance metric with metric namename and description
descr. uom specifies the unit of measurement, which is either “sec” or “occ”.
parent id is the identifier of a previously created metric which will bethe new
metric’s parent. To define a root node, use-1 instead.

11

4.1.2 Call-Tree Hierarchy

This group refers to the call-tree dimension of the performance space. The entities present
in this dimension aremodule, region, call site, andcall-tree node (i.e., call paths). A module
is a source file, which can contain several code regions. A region can be a function, a loop,
or a basic block. Each region can have multiple call sites from which the control flow of
the program enters a new region. Although we use the term callsite here, any place that
causes the program to enter a new region can be represented asa call site, including loop
entries. Correspondingly, the region entered from a call site is calledcallee, which might
as well be a loop. Every call-tree node points to a call site. The actual call path represented
by a call-tree node can be derived by following all the call sites starting at the root node
and ending at the particular node of interest. Therefore, before defining a call-tree node,
the necessary call sites, callees, and modules have to be defined.

int def module(string name)

Defines a new module with module namename, which could be either a complete
path or a file name.

int def region(string name, long begln, long endln,
string descr, int mode id)

Defines a new region with region namename and descriptiondescr. The region is
located in the modulemod id and exists from linebegln to lineendln.

int def csite(int mod id, int line, int callee id)

Defines a new call site which is located at the lineline of the modulemod id. The
call site calls the callee (i.e., a previously defined region) whose identifier is equal to
callee id.

int def cnode(int csite id, int parent id)

Defines a new call-tree node referring to the call sitecsite id. parent id is the
identifier of a previously created call-tree node which willbe the new one’s parent.
To define a root node, use-1 instead.

4.1.3 Location Hierarchy

This group refers to the location dimension of the performance space. The entities present
in this dimension aregrid, machine, node, process, andthread, which populate five levels

12

of the location hierarchy in the given order. That is, the first level has one grid, the second
level has multiple machines, and so on. Finally, the last (i.e., leaf) level is populated only
by threads. A location tree is built in a top-down way starting with a grid. Note that even
if every process has only one thread, users still need to define the thread level. Note that
different from the previous two dimension, the location dimension can have only one root,
that is, one grid.

int def grid(string name)

Defines a grid which has the namename. Note that only one grid can be defined.

int def mach(string name, int grid id)

Defines a new machine which has the namename and which belongs to the grid
grid id.

int def node(string name, int mach id)

Defines a new (SMP) node which has the namename and which belongs to the ma-
chinemach id.

int def proc(string name, int node id)

Defines a new process which has the namename and which belongs to theSMP node
node id.

int def thrd(string name, int proc id)

Defines a new thread which has the namename and belongs to the processproc id.

4.1.4 Severity Mapping

After the establishment of the three dimensional performance space, users can as-
sign severity values to points of the the space. Each point isidentified by a tuple
(met id, cnode id, thrd id). Note that the value should refer exclusively to the
call path denoted bycnode id and not to its children. Taking Figure 2 as an example, this
mean that if it refers tomain then it does not includemain-foo or main-bar. The default
severity value for the data points left undefined is zero. Thus, users only need to define
non-zero data points.

13

void set sev(int met id, int cnode id, int thrd id,
double value)

Assigns avalue to the point(met id, cnode id, thrd id).

void add sev(int met id, int cnode id, int thrd id,
double value)

Adds avalue to the existing value of point(met id, cnode id, thrd id).

void sub sev(int met id, int cnode id, int thrd id,
double value)

Subtracts avalue from the existing value of point(met id, cnode id,
thrd id).

4.2 Typical Usage

A simple C++ program is given to demonstrate how to use theCUBE write interface. Figure
5 shows the correspondingCUBE display. The source code of the target application is
provided in Figure 6.

Figure 5: Display ofexample.cube

14

1 void foo() {
...

10 }
11 void bar() {

...
20 }
21 int main(int argc, char* argv) {

...
60 foo();

...
80 bar();

...
100 }

Figure 6: Target-application source codeexample.c

// A C++ example using CUBE write interface
int main(int argc, char* argv[]) {
// Declarations (all int)
int id;
...

Cube cube;

// Build metric tree
id0 = cube.def_met("Time", "sec", "root node", -1);
id1 = cube.def_met("User time", "sec", "2nd level", id0);
id2 = cube.def_met("System time", "sec", "2nd level", id0);

// Build call tree
id = cube.def_module("/ICL/CUBE/example.c");
id0 = cube.def_region("main", 21, 100, "1st level", id);
id1 = cube.def_region("foo", 1, 10, "2nd level", id);
id2 = cube.def_region("bar", 11, 20, "2nd level", id);
id3 = cube.def_csite(id, 21, id0);
id4 = cube.def_csite(id, 60, id1);
id5 = cube.def_csite(id, 80, id2);
id0 = cube.def_cnode(id3, -1);
id1 = cube.def_cnode(id4, id0);
id2 = cube.def_cnode(id5, id0);

15

// Build location tree
id0 = cube.def_grid("Grid in ICL");
id0 = cube.def_mach("msc", id0);
id0 = cube.def_node("athena", id0);
id0 = cube.def_proc("Process 0", id0);
cube.def_thrd("Thread 0", id0);
cube.def_thrd("Thread 1", id0);

// Severity mapping
cube.set_sev(0, 0, 0, 4);
cube.set_sev(0, 0, 1, 4);
cube.set_sev(0, 1, 0, 4);
cube.add_sev(0, 1, 1, 4);
cube.add_sev(0, 2, 0, 4);
cube.add_sev(0, 2, 1, 4);
cube.set_sev(1, 0, 0, 1);
cube.set_sev(1, 0, 1, 1);
cube.set_sev(1, 1, 0, 1);
cube.add_sev(1, 1, 1, 1);
cube.add_sev(1, 2, 0, 1);
cube.add_sev(1, 2, 1, 1);
cube.set_sev(2, 0, 0, 1);
cube.set_sev(2, 0, 1, 1);
cube.set_sev(2, 1, 0, 1);
cube.add_sev(2, 1, 1, 1);
cube.add_sev(2, 2, 0, 1);
cube.add_sev(2, 2, 1, 1);

// Output to a cube file
ofstream out;
out.open("example.cube");
out << cube;

}

References

[1] Message Passing Interface Forum.MPI: A Message Passing Interface Standard, June
1995.http://www.mpi-forum.org.

[2] OpenMP Architecture Review Board.OpenMP Fortran Application Program Interface
- Version 2.0, November 2000.http://www.openmp.org.

16

[3] World Wide Web Consortium.Extensible Markup Language (XML) 1.0 (Second Edi-
tion), October 2000.http://www.w3.org/TR/REC-xml.

[4] World Wide Web Consortium.XML Schema Part 0, 1, 2, May 2001.http://www.
w3.org/XML/Schema#dev.

17

