CUBE

User Manual

Version 1.0/ September 29, 2004

Fengguang Song, Felix Wolf

Copyright (C) 2004 University of Tennessee

Contents

1 Introduction 3
2 Ingtallation 4
2.1 Platforms 4
2.2 InstalingCUBE. e 5
2.3 Installing CUBE Libraryonly 5
2.4 License e 5
2.5 LibrariesRequired 6
3 Usingthe Display 6
3.1 BasicPrinciples 6
3.2 GUIComponents e e e 8
3.2.1 TreeBrowsers 8
3.22 MenuBar 8
3.23 ColorLegend 10
3.24 StatusBar. 10
4 Creating CUBE Files 11
4.1 CUBEAPI . . . e 11
4.1.1 MetricHierarchy 11
4.1.2 Call-TreeHierarchy 12
4.1.3 LocationHierarchy 12
4.1.4 SeverityMapping 13
42 TypicalUsage 14

1 Introduction

cUBE (CUBE Uniform Behavioral Encoding) is a generic preseptattomponent suit-

able for displaying a wide variety of performance metriasgarallel programs including
MPI [1] and Opemp [2] applications. CUBE allows interactive exploration of a multidi-
mensional performance space in a scalable fashion. Skglabiachieved in two ways:

hierarchical decomposition of individual dimensions agdragation across different di-
mensions. All performance metrics are uniformly accomntedlan the same display and
thus provide the ability to easily compare the effects ofedént kinds of performance
behavior.

CUBE has been designed around a high-level data model of penfmartzehavior called the
CUBE performance space. TheCcUBE performance space consists of three dimensions: a set
of metricsM, a set of call pathé’, and a set of locations. The metric dimension contains
performance metrics, such as communication time or cackgasj the call path dimension
contains all the call paths forming the call tree of the paogrand the location dimension
contains all the control flows of the program, which can bepsses or threads depending
on the parallel programming model. Each pdimt c, /) of the space can be mapped onto a
number representing the actual measurement for metvitiile the program was executing
call pathc at location/. This mapping is called theeverity of the performance space.

Each dimension of the performance space is organized inrarbig. First, the metric
dimension is organized in an inclusion hierarchy, for exnpxecution time includes
communication time. Second, the call-path dimension iamized in a call-tree hierarchy,
since every call path is a node in the call tree. Finally, deation hierarchy is organized
in a multi-level hierarchy consisting of the levels grid, chane, sMP node, process, and
thread.

CUBE also includes a library to read and write instances of theiposly described data
model in the form of arxmL file. The file representation is divided into a metadata part
that describes the specific structure of the different dsrmars and a data part that contains
the severity numbers onto which the elements of the perfocemapace are mapped.

The display component can load such a file and display therdiit dimensions of the per-
formance space using three coupled tree browsers (Figuiéng)browsers are connected
so that the user can view one dimension with respect to andtimension. For example,

the user can click on a particular metric and see its digiohwacross the call tree. In addi-
tion, the display is augmented with a source-code displayghows the exact position of
a call site in the source code.

The following sections will explain how to instatilug, how to use the display, and also
how to writeCUBE files.

2 Installation

CUBE is available as a source-code distribution. You can useanként t p: / /i cl . cs.
ut k. edu/ to downloadcuBE. There are two options to instatluse: full installation
and installation of the library only. The current versionafse 1.0 is able to run on all
majoruNIx variants.

2.1 Platforms

CUBE currently supports all majasNix platforms on which wxWidgets and libxml|2 are
available. Note that libxmI2 or wxWidgets may require a sfiecompiler on some plat-

forms.

2.2 Installing CUBE

The full installation includes theuBE library to write acUBE file, and thecUBE display
component to display its contents.

1. gunzip cube.tar.gz | tar xvf
2. cd cube- xxxx
3. Editivakefil e. defs

e Set variabldP’REFI X to your desired installation path.

e Choose an appropriate compiler for your system (ggg, or x| C).
4. make

5. make install

2.3 Installing CUBE Library only

The partial installation will only install theuBe library on your system. This is intended
for users who just need to write their performance data ¢wae file, but don’t need to
display it on their machines.

1. Same as steps of 1 to 3 described in the above section.

2. make lib
3. make install-lib
24 License

This software is free but by downloading and using it you matcally agree to comply
with the license agreement. You can read thelfll€ENSE in the distribution for precise
wording.

2.5 LibrariesRequired

Both libraries listed below are necessary for usingdbek display component. For those
users who need theuse library only, only libxmI2 is required to be installed.

e LIBXML 2: an XML C parser and toolkit developed for the Gnome projdttis
preinstalled on many systems. Please refer to the libxml2pege for details:

http://xm soft.org/

e WXWIDGETS. a cross-platform C++ framework for writing advanced GUpkga-
tions using native controls. Please refer to the wxWidgetls page for details:

http://ww. wxwi ndows. or g/

3 Usingthe Display

This section explains how to use theBE display component. After a brief description of
the basic principles, different components of 8@ will be described in detail.

3.1 BasicPrinciples

Thecusk display consists of three tree browsers, each of them reptieg a dimension of
the performance space (Figure 1). The left tree displaysiteic dimension, the middle
tree displays the call-tree dimension, and the right trepldys the location dimension. The
nodes in the metric tree represent performance metricaaties in the call-tree dimension
represent call paths, and the nodes in the location dimenmsjresent either a group of
machines, called grid, a machine, a node, a process, or a thread.

Users can perform two types of actions: selecting a node matreking/collapsing a node.
At any time, there are two nodes selected, one in the me&&dnd the other in the call
tree. It is not possible to select a node in the location tree.

Each node is associated with a metric value, which is caledaverity and is displayed
simultaneously using a numerical value as well as a colayadre. Colors enable the easy
identification of nodes of interest even in a large tree, wagsthe numerical values enable
the precise comparison of individual values. A value showthe metric tree represents
the sum of a particular metric for the entire program, thaagsoss all call paths and all
locations. A value shown in the call tree represents the siutimeoselected metric across
all locations for a particular call path. And a value showthia location tree represents the
selected metric for the selected call path and a particatation. Briefly, a tree is always
an aggregation of all of its neighbor trees to the right.

Note that all the hierarchies iDUBE are inclusion hierarchies, meaning that a child node
represents a part of the parent node. For example, the rmetrarchy might display cache

CUBE: sweep3d_11.cube

File Wiew Help

Performance Metrics Call Tree Locations

= [0.00 Total = [0.00 driver = [0.00 Linux Cluster
= [1.29 Execution [] 0.00 task_init [0.01 zam0D0Be3
=1 [0.06 MPI [] 0.00 read_input W 0.02 zam00B8e4
=1 [0.00 Comtunication [] 0.00 decatmp =1 [0.00 zam00B8es

=1 [0.00 Callective =1 [0.00innet_auto = [0.00 Process 2

[] 0.00 Early Reduce = [0.00inner W 0.02 Thread 0

[0 0.00 Late Broadcast [J 0.00 initialize [0.00 Thread 1

W 002 Wait at M= M [] 0.00 harrier_sync [0 0.00 Thread 2

= I 0.07 F2F [0.00 timers_ [] 0.00 Thread 3
[0.00 Late Receiver [J 0.00 source =1 [0.00 zam00Be&

| B0.03 Late Sender | N0.03 sweep = [0.00 Process 3

[o000 [] 0.00 global_int_sum W 0.02 Thread 0

[0 0.00 Synchronization [0.00 flux_err [0.00 Thread 1

B 011 OMP [] 0.00 global_real_sum [0.00 Thread 2

[0 0.93 ldle Threads =1 [0.00 task_end [0 0.00 Thread 3

[0 0.00 MPI_Finalize

4 x4 |

LD
2

1.31e+02 ‘ Bee+02

Figure 1:cuBk display window.

misses as a child node of cache accesses because the foeneisew subset of the latter
event. Similarly, in Figure 2 the call pathain contains the call path®ain-foo andmain-
bar as child nodes because their execution times are includdteinparent’s execution
time.

The severity displayed iauBE follows the principle ofinglerepresentation, that is, within

a tree each fraction of the severity is displayed only oncke purpose of this display
strategy is to have a particular performance problem to appely once in the tree and,
thus, help identify it more quickly. Therefore, the sewedisplayed at a node depends
on the node’s state, whether it is expanded or collapsed.séWerity of a collapsed node
represents the whole subtree associated with that nodeeasthe severity of an expanded
node represents only the fraction that is not covered byegsendants because the severity
of its descendants is now displayed separately. We calldiredr onenclusive severity,
whereas we call the latter omclusive severity.

100 main

Figure 2: Node of the call tree in collapsed or expanded state

For instance, a call tree may have a noskn with two childrenmain-foo and main-bar
(Figure 2). In the collapsed state, this node is labeled théhtime spent in the whole

program. In the expanded state it displays only the fradtanis spent neither ifoo nor
in bar. Note that the label of a node does not change when it is exgobmdcollapsed, even
if the severity of the node changes from exclusive to ingkisir vice versa.

3.2 GUI Components

The Gul consists of a menu bar, three tree browsers, a color legeada status bar. In
addition, each tree browser provides a context menu for eadh, which can be used, for
example, to launch a source-code dialog.

3.2.1 TreeBrowsers

The tree browsers are controlled by the left and right moustebs. The left mouse button
is used to select or expand/collapse a node. The right mautsenks used to pop up a
context menu with node-specific information for either amgedr a call path. For call
paths and source-code entities a source-code dialog igdehv

A label in the metric tree shows a metric name. A label in tHetieze shows the last callee
of a particular call path. If you want to know the completel gath, you must read all
labels from the root down to the particular node you are egtd in. After switching to
the region-profile mode (see below), labels in the middle ttenote modules or regions
depending on their levels. A label in the location tree shtvesname of its respective
location entity, such as a node name or a machine name. Bescasd threads are usually
identified by a number, but it is possible to give them speaifimes when creating@BE
file.

Note that both the metric tree and the call tree can have pteilibot nodes. If there is only
one machine in the location tree, the grid level is not diggda Similarly, the thread level
of single-threaded applications is hidden.

3.2.2 Menu Bar
The menu bar consists of three menus, a file menu, a view madw help menu.

File
The file menu can be used to open and close a file and tceRit.

View
The view menu can be used to switch from the call-tree modeeaadgion-profile
mode or to change to another way of severity representafiguie 3).

After opening a file the middle pane shows the call tree of tiog@mm. However, a
user might wish to know which fraction of a metric can be htited to a particular re-
gion regardless of from where it was called. In this caseyutieg can switch from the

= CUBE: sweep3d_11.cube [[[

File View| Help

Perfon

O
=
=

r Call tree

‘ Call Tree

| Locations

_ Regian profile
- Absolute
r Percentage |

_I Relative percentage fion
[T o010
[0.0 Synchronization

= [0.0 driver
[0.0 task_init
[0.0 read_input
[] 0.0 decamp
= [0.0inner_auto
= [0.0inner

= [0.0 Linux Cluster
W 1.1 zam00&e3
W 1.1 zam00&ed
= [0.0 zam00Ge5
= [0.0FProcess 2
[0.3 Thread 0

= [0.0amMP [0.0 initialize O 0.2 Thread 1
[0.0 Flush [] 0.0 barrier_sync [0.3 Thread 2
= [0.0 Synchronization [0.0 timers_ [0.3 Thread 3

= [0.0 Barrier
[0.0 Explicit
| 4.3 Implict

= [0.0 zam00Ge6
= [0.0Process 3
[0.3 Thread 0

HEHHBEBEEBEBEHEH

[J 0.0 Lock Competitian O 0.0 flux_err O 0.2 Thread 1
[376 ldle Threads [0.0 global_raal_sum | | O 0.2 Thread 2
[0.0 task_end / [0.3 Thread 3
| - |
10‘ 2El| 3EI| 4EI| 5El| ED‘

?DIFIIIIIIIBIDIFIIIIIII;DIFIIIII!IDIDHl

Figure 3:CUBE menu bar.

call-tree mode (default) to the region-profile mode (FigdyeIn the region-profile
mode, the call-tree hierarchy is replaced with a sourceedwverarchy consisting of
three levels: module, region, and subregions. The submegibapplicable, are dis-
played as a single child node labekdbregions representing all regions called from
a particular region. In this way, the user is able to see whigttion of a metric is
associated with a region exclusively without its subregifre., its callees).

The severity can be displayed in three different ways: adanlate value (default),
as a percentage, and as a relative percentage. The absallugas/just the value as
it was measured. When displaying a value as a percentagpetbentage refers to
the value shown at the root of the metric hierarchy in cokajpstate.

However, both modes have the disadvantage that values camkevery small the
more you go to the right, since aggregation occurs from righéft. To avoid this
problem, the user can switch to relative percentages. Thparcentage in the right
or middle tree always refers to the selection in the neighbdhe left, that is, a
percentage in the location tree refers to the selected atillgnd a percentage in the
call tree refers to the selected metric instead of its rodtimeNote that in this mode
the percentages in the middle and right tree always sum upddandred percent.
Figure 4 shows a region profile with relative percentages.

Note that in the absolute mode, all values are displayediémsfic notation. How-

ever, to prevent cluttering the display only the mantissshiswn at the trees, the
exponent is shown at the color legend.

Help
Currently, the help menu provides only an about dialog wetkase information.

3.2.3 Color Legend

The color is taken from a spectrum ranging from blue to redesgnting the whole range
of possible values. To avoid an unnecessary distracti@mgnificant values close to zero
are displayed in dark gray. Zero values just have the bacdkgraolor. Depending on the
severity representation, the color legend shows a numeale snapping colors onto values.

3.24 StatusBar

The first column showing: x n indicates that there are processes and for each process
there are at most threads in the execution.

CUBE: sweep3d 11.cube

File Wiew Help

Performance hMetrics Region Profile Lacations
= [0.0 Taotal [0.0 libmpi.a A = [0.0 Linuz Cluster
= [49.2 Execution [0.0 libomp.a = [0.0 zam0d0ge3
= W Z4 MPI [0.3 sourcef = [0.0 Process 0
[6.6 Communication =1 [J 0.0 sweepf [0 7.9 Thread 0
[0 oo0io =1 [0.0 '$omp parallel & 5.7 Thread 1
[0.0 Synchranization [99.5 subregions O 5.6 Thread 2
= [0.0 orpP Wl zz.7 lfomp ibarrier [5.6 Thread 3
[J 0.0 Flush = [0.0 l$omp do = [0.0 zam0d0ge4
- B4.3 Synchranization B 76.5 subregions =] [0.0 Process 1
[J 376 ldle Threads B 76.8 $omp ibarrier [0 7.9 Thread 0
O 0.2 fux_ercf B [5.5 Thread 1
[1 0.0 driver.mod.F O 5.6 Thread 2
[0.0 mpi_stuff.f O 5.6 Thread 3
[J 0.0 read_input.mod.F O 25.1 zam008eS
[0.0 decomp.mod.F O 24.9 zam008e6
w1 A innar atn mad £ Vi
FIIII ‘ m ‘ | IIIIFIIIIIIIIIFIIIIIIIIIFIIIIIIII
1a 20 30 40 a0] o g =] 100

|4><4 |

Figure 4:cuUBE region profile.

10

4 Creating CUBE Files

The cuBE data format in arxMmL instance [3]. The corresponding XMLSchema specifi-
cation [4] can be found ikloc/ cube. xsd in the cuBE distribution. TheCUBE library
provides an interface to create)BE files. It is a simple class interface and includes only
a few methods. This section first describesthuBE API and then presents a simple C++
program as an example of how to use it.

4.1 CUBE API

The class interface definescdass Cube. The class provides a default constructor and
thirteen methods. The methods are divided into four grotips.first three groups are used
to define the three dimensions of the performance space arddhgroup is used to enter
the actual data. In addition, an output operaterto write the data to a file is provided.

The methods used to create the different entities of theopagnce space always return
an identifier which can be used for further reference. Eatitydmas a different identifier
domain{0,...,n — 1}.

4.1.1 Metric Hierarchy

This group refers to the metric dimension of the performaspace. It consist of a single
method used to build metric trees. Each node in the metrcrepresents a performance
metric. Metrics have different units of measurement. Thie eem be either$ec” (i.e.,
seconds) for time based metrics, such as execution timegax™(i.e., occurrences) for
event-based metrics, such as floating-point operationsn@the establishment of a metric
tree, a child metric is usually more specific than its paramd, both of them have same unit
of measurement. Thus, a child performance metric has to bbsesof its parent metric
(e.g., system time is a subset of execution time).

i nt def _nmet(string name, string uom string descr,
i nt parent_d)

Defines a new performance metric with metric namanme and description
descr. uomspecifies the unit of measurement, which is eitree¢” or “occ”.
par ent _i d is the identifier of a previously created metric which will thee new
metric’s parent. To define a root node, uskinstead.

11

4.1.2 Call-TreeHierarchy

This group refers to the call-tree dimension of the perforcgespace. The entities present
in this dimension arenodul e, region, call site, andcall-tree node (i.e., call paths). A module
is a source file, which can contain several code regions. kmetan be a function, a loop,
or a basic block. Each region can have multiple call sitesifrehich the control flow of
the program enters a new region. Although we use the ternsitalhere, any place that
causes the program to enter a new region can be represerdezhisite, including loop
entries. Correspondingly, the region entered from a ctdlisicalledcallee, which might
as well be a loop. Every call-tree node points to a call sitee dctual call path represented
by a call-tree node can be derived by following all the caksistarting at the root node
and ending at the particular node of interest. Thereforigrbalefining a call-tree node,
the necessary call sites, callees, and modules have to pediefi

i nt def _nodul e(string nane)

Defines a new module with module namane, which could be either a complete
path or a file name.

i nt def region(string nane, |ong begln, Iong endln,
string descr, int node.d)

Defines a new region with region namane and descriptiomlescr . The region is
located in the modulend_i d and exists from lindegl n to lineendl n.

int def csite(int nodlid, int line, int callee.d)

Defines a new call site which is located at the linene of the modulerod_i d. The
call site calls the callee (i.e., a previously defined repi@hose identifier is equal to
cal | ee.i d.

i nt def _cnode(int csitelid, int parent._.d)

Defines a new call-tree node referring to the call egét e_i d. par ent _i d is the
identifier of a previously created call-tree node which Ww#l the new one’s parent.
To define a root node, usel instead.

4.1.3 Location Hierarchy

This group refers to the location dimension of the perforogaspace. The entities present
in this dimension argrid, machine, node, process, andthread, which populate five levels

12

of the location hierarchy in the given order. That is, the fesel has one grid, the second
level has multiple machines, and so on. Finally, the last,(ieaf) level is populated only

by threads. A location tree is built in a top-down way staytwith a grid. Note that even

if every process has only one thread, users still need toal#imthread level. Note that
different from the previous two dimension, the location dimsion can have only one root,
that is, one grid.

i nt def _grid(string nane)

Defines a grid which has the namane. Note that only one grid can be defined.

i nt def _mach(string nane, int grid.id)
Defines a new machine which has the namaare and which belongs to the grid
grid.d.

i nt def _node(string nane, int nmach. d)

Defines a newgMP) node which has the nanmane and which belongs to the ma-
chinemach.i d.

i nt def proc(string nane, int node. d)

Defines a new process which has the narase and which belongs to th&vP node
node.i d.

int def_thrd(string nane, int proc.d)

Defines a new thread which has the namaee and belongs to the procegssoc_i d.

4.1.4 Severity Mapping

After the establishment of the three dimensional perforreaspace, users can as-
sign severity values to points of the the space. Each poindestified by a tuple
(et _.id, cnode.id, thrd. d). Note thatthe value should refer exclusively to the
call path denoted bgnode_i d and not to its children. Taking Figure 2 as an example, this
mean that if it refers tonain then it does not includenain-foo or main-bar. The default
severity value for the data points left undefined is zero. sThusers only need to define
non-zero data points.

13

void set sev(int net_.id, int cnode.d, int thrd.d,
doubl e val ue)

Assigns aval ue to the point(et _i d, cnode.id, thrd.id).
voi d add_sev(int net.d, int cnode.d, int thrd.d,
doubl e val ue)

Adds aval ue to the existing value of poiritrret _i d, cnode_.id, thrd.id).

voi d sub_sev(int net.id, int cnode.d, int thrd.d,
doubl e val ue)

Subtracts aval ue from the existing value of poin{net i d, cnode.i d,
thrd.d).

4.2 Typical Usage

A simple C++ program is given to demonstrate how to usecthee write interface. Figure
5 shows the correspondinguBE display. The source code of the target application is
provided in Figure 6.

CUBE: example.cube
File View Help

Ferformance kietrics Zall Tree Locations

=1 [12.0 Time =1 [2.0 main = [0.0 msc

N G.0 User time Wl Z.0 foo =1 [] 0.0 athena

O 6.0 System time =1 [0.0 Process O
B 1.0 Thread 0
B 1.0 Thread 1

T
Hiin S

24.00

Figure 5: Display oexanpl e. cube

14

10
11

20
21

60

80

100

VO

}

VO

}

in

idfoo() {

id bar() {

t main(int argc, char* argv) {
fO'Ol(j;

IDair.(j;

Figure 6: Target-application source cagbeanpl e. c

/'l A C++ exanple using CUBE wite interface
int main(int argc, char* argv[]) {

/1 Declarations (all int)
i d;

i nt

Cube cube;

[/ Build netric tree

i dO
idl
id2

cube
cube
cube

.def _met("Tinme", "sec", "root node", -1);
.def _nmet("User tine", "sec", "2nd level", id0);
.def _nmet("Systemtine", "sec", "2nd level", id0);

/] Build call tree

id

i dO
idl
i d2

id3 =

i d4
i d5
i dO
idl
i d2

cube. def _nmodul e("/1 CL/ CUBE/ exanpl e. c");
cube.
cube.
cube.
cube.
cube.
cube.
cube.
cube.
cube.

def _region("main", 21, 100, "1st level™, id);
def region("foo", 1, 10, "2nd level", id);
def _region("bar", 11, 20, "2nd level", id);
def csite(id, 21, id0);

def csite(id, 60, idl);
def csite(id, 80, id2);
def _cnode(id3, -1);

def _cnode(id4, idO0);
def _cnode(i d5, id0);

15

// Build |ocation tree

id0O = cube.def_grid("Gidin ICL");

i dO = cube. def _mach("nsc", id0);

i dO = cube. def _node("at hena", id0);

i dO = cube. def _proc("Process 0", id0);

cube. def _thrd("Thread 0", id0);
cube. def _thrd("Thread 1", id0);

/1 Severity mapping
cube. set _sev(0, 0, 0, 4);

cube. set _sev(0, 0, 1, 4);
cube. set _sev(0, 1, 0, 4);
cube. add_sev(0, 1, 1, 4);
cube. add_sev(0, 2, 0, 4);
cube. add_sev(0, 2, 1, 4);
cube. set _sev(1l, 0, 0, 1);
cube.set _sev(1l, 0, 1, 1);
cube. set _sev(1l, 1, 0, 1);
cube. add_sev(1, 1, 1, 1);
cube. add_sev(1l, 2, 0, 1);
cube. add_sev(1, 2, 1, 1);
cube. set _sev(2, 0, 0, 1);
cube. set _sev(2, 0, 1, 1);
cube.set _sev(2, 1, 0, 1);
cube. add_sev(2, 1, 1, 1);
cube. add_sev(2, 2, 0, 1);
cube. add_sev(2, 2, 1, 1);

[l Qutput to a cube file
of stream out ;

out . open("exanpl e. cube");
out << cube;

References

[1] Message Passing Interface ForumPI: A Message Passing Interface Sandard, June
1995.ht t p: / / www. npi - f or um or g.

[2] OpenMP Architecture Review Boar@penMP Fortran Application ProgramInterface
- Version 2.0, November 2000ht t p: / / www. opennp. or g.

16

[3] World Wide Web ConsortiumExtensible Markup Language (XML) 1.0 (Second Edi-
tion), October 2000ht t p: / / www. W3. or g/ TR/ REC- xm .

[4] World Wide Web ConsortiumXML Schema Part O, 1, 2, May 2001.ht t p: / / www.
w3. or g/ XM/ Schema#dev.

17

