
Exploiting the Performance of 32 bit Floating
Point Arithmetic in Obtaining 64 bit Accuracy

(Revisiting Iterative Refinement for Linear Systems)

Julie Langou
Piotr Luszczek
Alfredo Buttari

Julien Langou
Jakub Kurzak
Jack Dongarra

Friday Lunch May 19th 2006

Friday Lunch 5/19/2006 10:18 AM 2

Architecture of the cell

single-instruction multiple-data (SIMD)
architecture : Synergistic Processor

Unit (SPU)
Vector:128 bits

Fused add-multiply
Latency for double operations: 6 cycles

IBM 64-bit Power Architecture™ core
AltiVec/VMX Vector Unit

4 multiply-add /cycle for single
1 multiply-add/cycle for double

http://domino.research.ibm.com/comm/research.nsf/pages/r.arch.innovation.html
http://www.research.ibm.com/cell/cell_chip.html
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/

Cell is a heterogeneous chip multiprocessor that consists of an IBM 64-bit
Power Architecture™ core, augmented with eight specialized co-processors
based on a novel single-instruction multiple-data (SIMD) architecture.
Clock: 3.2Ghz

Friday Lunch 5/19/2006 10:18 AM 3

Performance of the cell

This is how single precision performance breaks down for the CBEThis is how single precision performance breaks down for the CBEThis is how single precision performance breaks down for the CBEThis is how single precision performance breaks down for the CBE by “by “by “by “JakubJakubJakubJakub””””
» The vector unit of one SPE can do one vector operation each cycle.

A vector is 128 bits and can hold 4 floats.
So, with fused add-multiply, you can have 8 single-precision floating point operation per cycle.
The target clock is 3.2 GHz (our cell is 2.1), so you get 3.2 * 8 = 25.6 GFLOPS on a single SPU. You have 8 SPUs, so in total you can get 8 *
25.6 = 204.8 GFLOPS from the 8 SPUs.
However the PPU has an Altivec/VMX vector unit which can also do 4 multiply-add operations per cycle.
So if you add it all together, the total single-precision performance of the whole CBE is 230.4 GFLOPS.

» Double precision can also be processed in a vectorized fashion on an SPE, but a vector can store only 2 64-bit doubles, so performance is cut by
2.
Additionally, the double precision operations are not fully pipelined, so one operation has a latency of 6 cycles, so you are 6 times slower.
So in total you are 6*2=12 times slower for a double precision operation.
And also the Altivec/VMX on the PPU cannot process doubles in a vectorized fashion, so on the PPU you rely on the standard floating point unit
which should still do a single multiply-add in one cycle.

» To sum up, for double precision on a 3.2 GHz chip, you have 2.13 GFLOPS on a single SPU, so 2.13 * 8 = 17 in total, plus 6.4 on the PPU =
23.47 total. So, around 230 GFLOPS single precision and around 23 GFLOPS double precision

» Peak performance for singleprecision: ~230 GFlops

» Peak performance for doubleprecision: ~24 GFlops

Friday Lunch 5/19/2006 10:18 AM 4

Problematic on the cell

» Single are 10 times faster than double!

» But single are 2 times less accurate than double

Can we get double accuracy results with a performance
not too far from the peak of single precision?

Friday Lunch 5/19/2006 10:18 AM 5

Jack’s idea: use iterative refinement!

» Factorize the matrix in single precision, O(n3) FLOP

» Then use this factorization as a preconditioner in a double precision
iterative method, O(n2) FLOP

» The single LU factorization is a POOR double LU factorization

but an EXCELLENT preconditioner

Typically the iterative methods will converge in few steps

» O(n3) FLOP vs O(n2): single computations dominate the # of FLOP:

» Speed of Single precision

» Convergence in a double precision iterative solver:

» Accuracy in Double precision

Friday Lunch 5/19/2006 10:18 AM 6

23 years back in Jack’s life:

» Improving the Accuracy of Computed Eigenvalues and
Eigenvectors, J. J. Dongarra, C. B. Moler and J. H. Wilkinson,
SIAM Journal on Numerical Analysis 20(1):23-45, February
1983, ISSN 0036-1429.

» Improving the Accuracy of Computed Singular Values, J. J.
Dongarra, SIAM Journal on Scientific and Statistical
Computing 4(4):712-719, December 1983, ISSN 0196-5204.

» Algorithm 589: SICEDR: A FORTRAN Subroutine for Improving
the Accuracy of Computed Matrix Eigenvalues, J. J. Dongarra,
ACM Transactions on Mathematical Software 8(4):371-375,
December 1982, ISSN 0098-3500.

Friday Lunch 5/19/2006 10:18 AM 7

Introduction to Iterative Refinement

Algorithm

� L U = lu(A) %LU factorization (SINGLE) O(n3)

� x = L\(U\b) % Solve (SINGLE) O(n2)

� r = b – Ax % Residual (DOUBLE) O(n2) (DOUBLE) O(n2)

� while (|| r || not small enough), %stopping criteria

� z = L\(U\r) %LU factorization on the residual (SINGLE) O(n2)

� x = x + z % new solution (DOUBLE) O(n2)

� r = b - Ax % new residual (DOUBLE) O(n2)

� End

� COST: (SINGLE) O(n3) + #ITER * (DOUBLE) O(n2)

Friday Lunch 5/19/2006 10:18 AM 8

limitation

c(n) . εs . κ (A) < 1

Friday Lunch 5/19/2006 10:18 AM 9

limitation

c(n) . εs . κ (A) < 1

⇒ the condition number of A cannot be too large

(typically κ(A) < 108 for this scheme as opposed to κ(A) < 1016
for regular double LU)

Limitation also with the range of the numbers used (overflow
quicker in single)

Friday Lunch 5/19/2006 10:18 AM 10

Number of steps

» Approximately …

» double precision: εd = 10-16 -> td = -log10(εd) = 16
» single precision: εs= 10-8 -> ts = -log10(εs) = 8
» condition number: κ (A) = 104 -> tk = log10(κ (A)) = 4

» Max # of steps = td/(ts-tk)
= 16/(8-4)
= 4

Friday Lunch 5/19/2006 10:18 AM 11

what about your laptop …

Friday Lunch 5/19/2006 10:18 AM 12

Single vs Double

10 10 -Cell

2.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

0.711500Intel Itanium 2 (Goto and ATLAS)

1.131.082000SGI Octane (ATLAS)

1.131.033000IBM SP Power3 (ESSL)

1.080.993000Compaq Alpha EV6 (CXML)

1.541.684000Cray X1 (libsci)

1.931.984000AMD Opteron (Goto)

1.982.024000Intel Pentium IV-M Northwood (Goto)

1.862.004000Intel Pentium IV Prescott (Goto)

1.791.453000 Sun UltraSPARC IIe (Sunperf)

2.112.123000Intel Pentium III Katmai (Goto)

2.242.10 3500 Intel Pentium III Coppermine (Goto)

DGETRF

/SGETRF

DGEMM

/SGEMM
nArchitectures (BLAS/LAPACK)

Friday Lunch 5/19/2006 10:18 AM 13

OPERATION PER CYCLE TIME

DoubleSingle

02442Athlon4

02442AthlonMP

02402Enhanced Athlon

02402Athlon

21041Pentium 4

01041Pentium III

01001Pentium II

01001Pentium

SSE2x873DNOW!SSEx87
Processor

MMX : Set of "MultiMedia eXtensions" to the x86 ISA. Mainly new instructions for integer performance, and maybe some prefetch. For Intel, all
chips starting with the PentiumMMX processor possess these extensions. For AMD, all chips starting with the K6 possess these extensions.
SSE: Streaming SIMD (Single Instruction Multiple Data) Extensions. SSE is a superset of MMX.These instructions are used to speed up single
precision (32 bit) floating point arithmetic. For Intel, all chips listed starting with the Pentium III possess SSE extensions. For AMD, all chips
starting from Athlon4 possess SSE.
3DNow! :AMD's extension to MMX that does almost the exact same thing SSE does, except the single precision arithmetic is not IEEE compliant
. It is also a superset of MMX (but not of SSE; 3DNow! was released before SSE). It is supported only on AMD, starting with the K6-2 chip.
SSE2:Additional instructions that perform double precision floating arithmetic. Allows for 2 double precision FLOPs every cycle. For Intel,
supported on the Pentium 4 and for AMD, supported on the Opteron.

Friday Lunch 5/19/2006 10:18 AM 14

AMD Opteron(tm) Processor 240
(1.4GHz), Goto BLAS (1 thread)

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 15

Sun UltraSPARC-IIe (502 MHz),
SunPerf

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 16

Intel Pentium III CopperMine
(0.9GHz), Goto BLAS

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 17

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Intel Pentium Xeon Northwood
(2.4GHz), Goto BLAS (1 thread)

Friday Lunch 5/19/2006 10:18 AM 18

Intel Pentium IV Prescott (3.4GHz),
Goto BLAS (1 thread)

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 19

CRAY X1, libsci

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 20

Power PC G5, vecLib (2 threads)

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 21

Compaq Alpha EV6, XML

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500 3500 4500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 22

SGI Octane (270 MHz),
ATLAS 3.6 (1 thread)

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 23

IBM SP RS/6000,
Power 3, (1.5 GHz), ESSL

0

10

20

30

40

50

60

70

80

90

100

110

500 1500 2500

size of the matrix

pe
rc

en
t o

f D
G

E
TR

F

DGESV

DSGESV

SGETRF

SGETRS

DGEMV

EXTRA

Friday Lunch 5/19/2006 10:18 AM 24

Final Results

0.711500Intel Itanium 2 (Goto and ATLAS)

40.911.131.082000SGI Octane (ATLAS)

31.001.131.033000IBM SP Power3 (ESSL)

41.011.080.993000Compaq Alpha EV6 (CXML)

51.242.052.295000IBM Power PC G5 (2.7 GHz) (VecLib)

71.381.541.684000Cray X1 (libsci)

51.531.931.984000AMD Opteron (Goto)

51.841.982.024000Intel Pentium IV-M Northwood (Goto)

51.571.862.004000Intel Pentium IV Prescott (Goto)

41.581.791.453000 Sun UltraSPARC IIe (Sunperf)

1.79

1.92

DGESV

/DSGESV

42.112.123000Intel Pentium III Katmai (Goto)

42.242.10 3500 Intel Pentium III Coppermine (Goto)

#
iter

DGETRF

/SGETRF

DGEMM

/SGEMM

nArchitectures (BLAS/LAPACK)

very effective on a number, but not all, architectures.

Friday Lunch 5/19/2006 10:18 AM 25

Run on parallel machines

61.831.903200064
AMD Opteron

(Goto – OpenMPI MX)

61.791.852262732
AMD Opteron

(Goto – OpenMPI MX)

Number of
iterations

PDGESV

/

PDSGESV

PDGETRF

/

PSGETRF

n#
processorsArchitecture

(BLAS-MPI)

» the cost of the iterative refinement O(n2) becomes
negligible with respect to PDGETRF O(n3).

» Using PDSGESV is almost twice as fast (1.83) as
opposed to using PDGESV for the same accuracy

Friday Lunch 5/19/2006 10:18 AM 26

Quad / double

» Expected Accuracy: 10-32

» No more than 3 steps of iterative refinement are needed.

» The speedup goes from 10 (n=100) to close to 100 (n=1000).

94.8 2.92 276.94 1000

86.3 2.33 201.81 900

77.3 1.83 141.75 800

68.7 1.38 94.95 700

59.0 1.01 60.11 600

49.7 0.69 34.71 500

40.4 0.44 17.81 400

30.5 0.24 7.61 300

20.9 0.10 2.27 200

9.5 0.03 0.29 100

speedup
time (s) time (s)

n
QDGESV QGESV

» Intel Xeon 3.2Ghz

» ifort –O3

» Reference Blas

Friday Lunch 5/19/2006 10:18 AM 27

Implementation and Testing

DSGESV computes the solution to a real system of linear equations

A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

DSGESV first tries to factorize the matrix in SINGLE PRECISION and use this
factorization within an iterative refinement procedure to produce a solution with
DOUBLE PRECISION normwise backward error quality.

If the approach fails the method switch to a DOUBLE PRECISION factorization and
solve.

The iterative refinement process is stopped if

ITER < ITERMAX = 30

or

Backward error = RNRM / (XNRM * ANRM) < MIN(4,SQRT(N/6) * EPS

where

» ITER is the number of iteration in the iterative refinement process

» RNRM is the 2-norm of the residual

» XNRM is the 2-norm of the solution

» ANRM is the Frobenius-norm of the matrix A

» EPS is the relative machine precision returned by DLAMCH

Friday Lunch 5/19/2006 10:18 AM 28

Related work / Originality

» Iterative refinement is not a new subject. Lots of literature.

» Never been done for speed before, only for accuracy

» Iterative refinement was used to

» Cope with not stable LU factorization (SuperLU, pivot
growth)

» Improve forward error (cf. Berkeley guys)

» Most of the theorems on mixed-precision iter-ref are:

“what is the SINGLE accuracy I can get with iterative
refinement single/double?”

» Our problem is :

“what is the DOUBLE accuracy I can get using iterative
refinement single/double?”

» See theoretical analysis at the end of technical report:
http://www.cs.utk.edu/~library/TechReports/2006/ut-cs-06-574.pdf

Friday Lunch 5/19/2006 10:18 AM 29

extensions

» More Algorithms:

» Cholesky / QR / eigenvalue / singular value

» Various precisions

» Quad/double

» Change the outer iterative methods

» Richardson -> GCR, GMRES

» Change the inner solve (SPARSE)

» Instead of backward/forward solve in LU single, any
solver (iterative methods) will do

Friday Lunch 5/19/2006 10:18 AM 30

More information

http://icl.cs.utk.edu/~julie/iter-ref/

Friday Lunch 5/19/2006 10:18 AM 31

Future work

» Implementation of Ax = b on the Cell processor

