(Revisiting Iterative Refinement for Linear Systems)

Julie Langou Julien Langou
Piotr Luszczek Jakub Kurzak
Alfredo Buttari Jack Dongarra

icL £ vr

Innovative Computing Laboratory
COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF TENNESSEE Frlday Lunch May 19th 2006

Architecture of the cell

Cell is a heterogeneous chip multiprocessor that osists of an IBM 64-bit
Power Architecture™ core, augmented with eight spealized co-processors

based on a novel single-instruction multiple-datagIMD) architecture.
Clock: 3.2Ghz

single-instruction multiple-data (SIMD)
— L architecture : Synergistic Processor
= e e e Unit (SPU)

== = == A Vector:128 bits
= Fused add-multiply
Tlatency for double operations: 6 cycles

Cell Broadband Engine Processor

TR e

112{BM 64-bit Power Architecture™ core
3 AltiVec/VMX Vector Unit

4 multiply-add /cycle for single

1 multiply-add/cycle for double

ol ETATEEET
i

Friday Lunch 5/19/2006 10:18 AM

Performance of the cell

This is how single precision performance breaks down for the CBE by “Jakub”

The vector unit of one SPE can do one vector operation each cycle.

A vector is 128 bits and can hold 4 floats.

So, with fused add-multiply, you can have 8 single-precision floating point operation per cycle.

The target clock is 3.2 GHz (our cell is 2.1), so you get 3.2 * 8 = 25.6 GFLOPS on a single SPU. You have 8 SPUs, so in total you can get 8 *
25.6 = 204.8 GFLOPS from the 8 SPUs.

However the PPU has an Altivec/VMX vector unit which can also do 4 multiply-add operations per cycle.

So if you add it all together, the total single-precision performance of the whole CBE is 230.4 GFLOPS.

Double precision can also be processed in a vectorized fashion on an SPE, but a vector can store only 2 64-bit doubles, so performance is cut by
2

Additionally, the double precision operations are not fully pipelined, so one operation has a latency of 6 cycles, so you are 6 times slower.

So in total you are 6*2=12 times slower for a double precision operation.

And also the Altivec/VMX on the PPU cannot process doubles in a vectorized fashion, so on the PPU you rely on the standard floating point unit
which should still do a single multiply-add in one cycle.

To sum up, for double precision on a 3.2 GHz chip, you have 2.13 GFLOPS on a single SPU, s0 2.13 * 8 = 17 in total, plus 6.4 on the PPU =
23.47 total. So, around 230 GFLOPS single precision and around 23 GFLOPS double precision

Peak performance faingleprecisioni~230 GFlops
Peak performance faloubleprecision:i~24 GFlops

Friday Lunch 5/19/2006 10:18 AM

Problematic on the cell

» Single are 10 times faster than double!

» But single are 2 times less accurate than double

Can we get double accuracy results with a performance
not too far from the peak of single precision?

Friday Lunch 5/19/2006 10:18 AM

Jack’s idea: use iterative refinement!

Factorize the matrix in single precision, O(n3) FLOP

Then use this factorization as a preconditioner in a double precision
iterative method, O(n2) FLOP

The single LU factorization is a POOR double LU factorization
but an EXCELLENT preconditioner

Typically the iterative methods will converge in few steps

O(n3) FLOP vs O(n2): single computations dominate the # of FLOP:
» Speed of Single precision

Convergence in a double precision iterative solver:
» Accuracy in Double precision

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

23 years back in Jack’s life:

» Improving the Accuracy of Computed Eigenvalues and
Eigenvectors, J. J. Dongarra, C. B. Moler and J. H. Wilkinson,
SIAM Journal on Numerical Analysis 20(1):23-45, February
1983, ISSN 0036-1429.

Improving the Accuracy of Computed Singular Values, J. J.
Dongarra, SIAM Journal on Scientific and Statistical
Computing 4(4):712-719, December 1983, ISSN 0196-5204.

Algorithm 589: SICEDR: A FORTRAN Subroutine for Improving
the Accuracy of Computed Matrix Eigenvalues, J. J. Dongarra,
ACM Transactions on Mathematical Software 8(4):371-375,
December 1982, ISSN 0098-3500.

Friday Lunch 5/19/2006 10:18 AM

o
Ll

Introduction to Iterative Refinement

Algorithm

» LU = |u(A) %LU factorization (SINGLE) O(n3)

+» X = L\(U\b) % Solve (SINGLE) O(n2)

« r=Db - AX % Residual (DOUBLE) O(n2) (DOUBLE) O(n2)

while (|| r || not small enough), %stopping criteria

o« L = L\(U\r) %LU factorization on the residual (SINGLE) O(n2)
«+ X=X+ Z % new solution (DOUBLE) O(n2)
« F'=Db-AX % new residual (DOUBLE) O(n2)

- End

» COST: (SINGLE) o(n3) + #ITER * (DOUBLE) O(n2)

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

limitation

Friday Lunch 5/19/2006 10:18 AM

limitation

c(n).g .k (A) <1

= the condition number of A cannot be too large

(typically K(A) < 108 for this scheme as opposed to K(A) < 1016
for regular double LU)

Limitation also with the range of the numbers used (overflow
quicker in single)

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

Number of steps

Approximately ..

double precision: ¢, = 1016 -> td = -log,,(g4) = 16

single precision: ¢, = 108 -> t. = -log,,(g;) = 8
condition number: k (A) = 104 -> t, = logp(k (A)) =

Max # of steps = td/(ts-tk)
= 16/(8-4)
=4

Friday Lunch 5/19/2006 10:18 AM

what about your laptop ...

Friday Lunch 5/19/2006 10:18 AM

Single vs Double

DGEMM DGETRF
/SGEMM /SGETRF

Cell 10 10

Intel Pentium III Coppermine (Goto) 2.10 2.24
Intel Pentium III Katmai (Goto) Lyl 21l
Sun UltraSPARC IIe (Sunperf) 1.45 1.79
Intel Pentium IV Prescott (Goto) 2.00 1.86
Intel Pentium IV-M Northwood (Goto) a2 198
AMD Opteron (Goto) 1.98 1.93
Cray X1 (libsci) 1.68 1.54
IBM Power PC G5 (2.7 GHz) (VecLib) 2.29 2.05
Compaq Alpha EV6 (CXML) 0.99 1.08
IBM SP Power3 (ESSL) 1.03 1.13
SGI Octane (ATLAS) 1.08 1.13
Intel Itanium 2 (Goto and ATLAS) 0.71

Architectures (BLAS/LAPACK)

ICL oga ur Friday Lunch 5/19/2006 10:18 AM

OPERATION PER CYCLE TIME

Double

Processor
3DNOW! x87 SSE2

Pentium

Pentium II

Pentium III

Pentium 4

Athlon

Enhanced Athlon

Athlon4
AthlonMP

|| O|O| | Ah|O| O
|| |] O|]OC|OC| O

NIN| NN| =] =R
|0 O|O| N|O| O] O

MMX : Set of "MultiMedia eXtensions" to the x86 ISA. MBimew instructions for integer performance, and/bgasome prefetch. For Intel, a
chips starting with the PentiumMMX processor posslesse extensions. For AMD, all chips starting with K6 possess these extensions.
SSE: StreamindSIMD (Single Instruction Multiple Data) Extensions. SiS& superset of MMX.These instructions are usexpeed up single
precision (32 bit) floating point arithmetic. Fartél, all chips listed starting with the Pentiurhpbssess SSE extensions. For AMD, all chips
starting from Athlon4 possess SSE.

3DNow! :AMD's extension to MMX that does almost the exsaine thing SSE does, except the single precisitinraatic is not IEEE complian
. It is also a superset of MMX (but not of SSE; 3N was released before SSE). It is supported onbAMD, starting with the K6-2 chip.
SSEZ2:Additional instructions that perform double prearsfloating arithmetic. Allows for 2 double pre@si FLOPs every cycle. For Intel,
supported on the Pentium 4 and for AMD, supportethe Opteron.

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

KZd AMD Opteron(tm) Processor 240
(1.4GHz), Goto BLAS (1 thread)

DSGESV

—<— SGETRS

L
o
l—
L
o
()]
©
=
D
e
@
o

—— - - -
N X, 2 2
W SR _ '
7N P ————— T
1 1

2500 3500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

i3 sun UltrasPARC-IIe (502 MHz),
SunPerf

DSGESV

s

—<— SGETRS

L
o
l—
L
o
()]
©
=
D
e
@
o

—2¢

2500 3500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

o Intel Pentium III CopperMine
(0.9GHz), Goto BLAS

DSGESV

—<— SGETRS

LL
o
—
LLJ
)
a
S
=
D
i~
D
o

K

2500 3500 4500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

Intel Pentium Xeon Northwood
(2.4GHz), Goto BLAS (1 thread)

DSGESV

—<— SGETRS

LL
o
—
LLJ
)
a
S
=
D
i~
D
o

2500 3500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

K3 1ntel Pentium IV Prescott (3.4GHz),
Goto BLAS (1 thread)

DSGESV

2

—<—SGETRS

20

80

70

60

50

40

L
ad
I—
L
O
M)
©
I=
@
—
@
o

30

20

10 thwos

| ‘X/ ‘K’x\#;"vm
0 -

500 1500 2500 3500

size of the matrix

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

CRAY X1, libsci

DSGESV
—— SGETRF
—— SGETRS

L.
ad
I—
L
O
(M)
©
=
@
—
@
o

X

NN

<
S—

2500 3500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

22 Power PC G5, veclLib (2 threads)

DSGESV
—— SGETRF
—<— SGETRS

L
ad
I—
L
O
M)
©
=
@
—
@
o

.
e R =]
—

2500 3500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

Compaq Alpha EV6, XML

DSGESV
20 —— SGETRF
80 —— SGETRS

70

60

50

40

L
o
'—
L
O
(M)
©
=
D
e
@
o

30

20

10

MK
:I:~\.}(W}\»,{- K N

0 } T T & T
500 1500 2500 3500

Ne—
>

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

L
ad
I—
L
O
M)
©
=
@
—
@
o

SGI Octane (270 MH2z),
ATLAS 3.6 (1 thread)

DSGESV

s

—<—SGETRS

1500

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

IBM SP RS/6000,
Power 3, (1.5 GHz), ESSL

DSGESV

—<— SGETRS

L
o
I_
L
O
()]
S
c
)
=
)
S

size of the matrix

Friday Lunch 5/19/2006 10:18 AM

Final Results

Architectures (BLAS/LAPACK) DGEMM DGETRF DGESV
/SGEMM /SGETRF /DSGESV

Intel Pentium III Coppermine (Goto) 2.10 2.24 1.92

P

Intel Pentium III Katmai (Goto) 2.12 2.11 1.79

Sun UltraSPARC IIe (Sunperf) 1.45 1.79 1.58

Intel Pentium IV Prescott (Goto) 2.00 1.86 5%

Intel Pentium IV-M Northwood (Goto) 2.02 1.98 1.84

AMD Opteron (Goto) 1.98 1.93 53

Cray X1 (libsci) 1.68 1.54 1.38
IBM Power PC G5 (2.7 GHz) (VeclLib) 2.29 2.05 1.24

Compaq Alpha EV6 (CXML)

IBM SP Power3 (ESSL)

ENSN (OO I SR O NV (O) (O I (O B (B SN (B SN (B SN

SGI Octane (ATLAS)

Intel Itanium 2 (Goto and ATLAS)

very effective on a number, but not all, architectures.

ICL oga ur Friday Lunch 5/19/2006 10:18 AM

Run on parallel machines

Architect # PDGETRF PDGESV
rchitecture processors / / Number of
(BLAS-MPI)

iterations
PSGETRF PDSGESV

AMD Opteron
(Goto - OpenMPI MX) 1.85 1.79

AMD Opteron
(Goto - OpenMPI MX)

the cost of the iterative refinement O(n2) becomes
negligible with respect to PDGETRF O(n3).

Using PDSGESV is almost twice as fast (1.83) as
opposed to using PDGESV for the same accuracy

icvS or

Friday Lunch 5/19/2006 10:18 AM

Quad / double

QGESV QDGESV
time (s) time (s)

i g A o I-ntel Xeon 3.2Ghz

ifort -O3

200 2.27 0.10 20.9 Reference Blas
300 7.61 0.24 SRS
400 VAN 1 0.44 40.4
500 34.71 0.69 49.7
600 60.11 1.01 59.0
700 94.95 1.38 68.7
800 141.75 1.83 77.3
900 201.81 2.33 86.3
1000 276.94 2.92 94.8

speedup

» Expected Accuracy: 10-32
» No more than 3 steps of iterative refinement are needed.
» The speedup goes from 10 (n=100) to close to 100 (n=1000).

ICL oga ur Friday Lunch 5/19/2006 10:18 AM

o
Ll

Implementation and Testing

DSGESV computes the solution to a real system of linear equations
A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

DSGESV first tries to factorize the matrix in SINGLE PRECISION and use this
factorization within an iterative refinement procedure to produce a solution with
DOUBLE PRECISION normwise backward error quality.

If the approach fails the method switch to a DOUBLE PRECISION factorization and
solve.

The iterative refinement process is stopped if
ITER < ITERMAX = 30
o]g
Backward error = RNRM / (XNRM * ANRM) < MIN(4,SQRT(N/6) * EPS

where

» ITER is the number of iteration in the iterative refinement process

» RNRM is the 2-norm of the residual

» XNRM is the 2-norm of the solution

» ANRM is the Frobenius-norm of the matrix A

» EPS is the relative machine precision returned by DLAMCH

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

Related work / Originality

Iterative refinement is not a new subject. Lots of literature.
Never been done for speed before, only for accuracy
Iterative refinement was used to

» Cope with not stable LU factorization (SuperLU, pivot
growth)

» Improve forward error (cf. Berkeley guys)

Most of the theorems on mixed-precision iter-ref are:

“what is the SINGLE accuracy I can get with iterative
refinement single/double?”

Our problem is :

“what is the DOUBLE accuracy I can get using iterative
refinement single/double?”

See theoretical analysis at the end of technical report:

ICL Q) ur Friday Lunch 5/19/2006 10:18 AM

extensions

More Algorithms:
» Cholesky / QR / eigenvalue / singular value

Various precisions
» Quad/double

Change the outer iterative methods
» Richardson -> GCR, GMRES

Change the inner solve (SPARSE)

» Instead of backward/forward solve in LU single, any
solver (iterative methods) will do

ICL oga ur Friday Lunch 5/19/2006 10:18 AM

More information

Friday Lunch 5/19/2006 10:18 AM

Future work

» Implementation of Ax = b on the Cell processor

Friday Lunch 5/19/2006 10:18 AM

