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“ Eigenvalues
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¢ Given a matrix A and its eigenvalue,
eigenvector pair 4. X are by
definition AX = AX

+ A standing wave in a rope fixed at its
boundaries can be seen as an example of
an eigenvector, or more precisely, an
eigenfunction of the transformation
corresponding to the passage of time.
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< The Problem

¢+ Want to solve
AX = AX

+ But on a computer we make errors
and don't get A, X exactly, but
there exists 4, y such that

A(X+Y)=(A+p)(X+Y)
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GivenA & xcanwe find p & y
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A(X+y) = (A+u)(x+Y)
Expanding things

AX+ Ay = AX+ AX+ pX + 1y

Rearranging things

(A—Al)Yy — ux = AX— AX+ 1y

(A=Al)y—px=r @ oo o
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We have (A—Al)y—ux=r
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¢+ At the moment we have n+1
unknowns 1,y and n equations.

+ Need one more equation.

+ Eigenvectors can be normalized, we
will choose x.=1, s is arbitrary.

+ This imposes another constraint on
the problem.
»>n+1 unknowns and n+1 equations




o)
< We Have (A—Al)y—ux=r

¢ Rewrite the equation in matrix form
with the constraint x.=1 or y=0.

A-Al =x\y) (T
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We will ignore it.
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luy Is a term in the error squared
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¢ We Have a Symmetric Elgenvalue
Problem

¢ For a symmetric eigenvalue problem
the eigenvalues are real and the
eigenvectors are orthogonal.

¢+ The matrix, A, can be reduced to
a similar form, tridiagonal.

¢ The reduction is done by a
sequence of orthogonal
transformations, called Q.
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Reduction to Tridiagonal Form

QAQ =T

cost: ~ % n3 flops
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¢ Let say we have computed the
reduction to tridiagonal form
»>We will do this in 32 bit arithmetic
»>0(n3) ops

'QAQ =T
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< At This Stage...

+ We have the reduction to
tridiagonal form
>QTAQ = T

+ And we compute the eigenvalues of
T in 32 bit floating point
arithmetic.

¢+ Now we want to compute a more
accurate eigenvalue and an
eigenvector
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+ Multiplying by QT on both sides and

using
>QTAQ = T and
rQQ=QQ" =T

TN
O
2,

1) A L VI G

Identity

33 12




o il Gl G G G

T-A -Q'x)Q'y) (Q'r
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¢ The matrix is

;1 5 ' .| arank 2
2 _ modification of
5 o p = atridiagonal
B a * matrix.

* = x» = = 0] ¢Easy to solve
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Approach

¢+ Reduce the matrix to tridiagonal form in single
precision.

¢+ Compute the eigenvalues in single precision.

+ Solve the tridiagonal system in an iterative
step to improve the accuracy of the eigenvalue
and computer the eigenvector.

> Do this for each eigenvalue, eigevector pair
¢ Process is equivalent to Newton's method
> Quadratic convergence

Reiuires 1.5 X the storage (one copy of the

matrix in double precision and another in single

precision)
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Algorithm (For each eigenpair)

+ Reduce the matrix A to tridiagonal form T with a
set of transformations Q

+ Compute the eigenvalues of A

+ T = QTAQ %Reduce the matrix to tridiagonal form SINGLE O(n3)
+ A= eig(T) % Fine the eigenvalues of T SINGLE O(n?)
+ = AX - AXx % Residual DOUBLE O(n?) with random x
«Form B =(T-Al,-Q™X ) % SINGLE O(n?)

(e7Q, 0 )
< (L,U)=LU(B) % Factor the matrix B SINGLE O(n)

<« while (|| r || not small enough ), %stopping criteria
« Z= L\(U\r‘) %LU factorization on the residual SINGLE O(n)
* X=X+ Qzlzn % new solution DOUBLE O(n?)
+ N A+ Z,.1 % new solution DOUBLE O(1)
« = QT()\ X - AX) % new residual DOUBLE O(n?)
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