PAPI Software Specification

Version 3.0b

This software specification describes the PAPI 3.0 Release, and is current as of March 08, 2004. It consists of the following sections:

· Introduction to PAPI Constants

· Standardized Event Definitions

· Return Codes

· Low Level API

· High Level API

Introduction to PAPI Constants

The PAPI constants are defined in the header files:

papiStdEventDefs.h
papi.h
The header file papiStdEventDefs.h contains platform specific constants. These constants are presented in Table 1: Standardized Event Definitions below. The user should read the documentation that accompanies this table for an explanation of these constants.

The remaining header file papi.h contains the PAPI Return Codes , among other internal definitions.

Standardized Event Definitions

The following is a table of hardware events deemed relevant and useful in tuning application performance. These events have identical assignments in the header files on different platforms however they may differ in their actual semantics. In addition, all of these events are not guaranteed to be present on all platforms. Please check your platform's documentation carefully. Note: these values should not be changed by the user.

	Value
	Symbol
	Description

	0x80000000
	PAPI_L1_DCM
	Level 1 data cache misses

	0x80000001
	PAPI_L1_ICM
	Level 1 instruction cache misses

	0x80000002
	PAPI_L2_DCM
	Level 2 data cache misses

	0x80000003
	PAPI_L2_ICM
	Level 2 instruction cache misses

	0x80000004
	PAPI_L3_DCM
	Level 3 data cache misses

	0x80000005
	PAPI_L3_ICM
	Level 3 instruction cache misses

	0x80000006
	PAPI_L1_TCM
	Level 1 total cache misses

	0x80000007
	PAPI_L2_TCM
	Level 2 total cache misses

	0x80000008
	PAPI_L3_TCM
	Level 3 total cache misses

	0x80000009
	PAPI_CA_SNP
	Snoops

	0x8000000A
	PAPI_CA_SHR
	Request for access to shared cache line (SMP)

	0x8000000B
	PAPI_CA_CLN
	Request for access to clean cache line (SMP)

	0x8000000C
	PAPI_CA_INV
	Cache Line Invalidation (SMP)

	0x8000000D
	PAPI_CA_ITV
	Cache Line Intervention (SMP)

	0x8000000E
	PAPI_L3_LDM
	Level 3 load misses

	0x8000000F
	PAPI_L3_STM
	Level 3 store misses

	0x80000010
	PAPI_BRU_IDL
	Cycles branch units are idle

	0x80000011
	PAPI_FXU_IDL
	Cycles integer units are idle

	0x80000012
	PAPI_FPU_IDL
	Cycles floating point units are idle

	0x80000013
	PAPI_LSU_IDL
	Cycles load/store units are idle

	0x80000014
	PAPI_TLB_DM
	Data translation lookaside buffer misses

	0x80000015
	PAPI_TLB_IM
	Instruction translation lookaside buffer misses

	0x80000016
	PAPI_TLB_TL
	Total translation lookaside buffer misses

	0x80000017
	PAPI_L1_LDM
	Level 1 load misses

	0x80000018
	PAPI_L1_STM
	Level 1 store misses

	0x80000019
	PAPI_L2_LDM
	Level 2 load misses

	0x8000001A
	PAPI_L2_STM
	Level 2 store misses

	0x8000001B
	PAPI_BTAC_M
	BTAC miss

	0x8000001C
	PAPI_PRF_DM
	Prefetch data instruction caused a miss

	0x8000001D
	PAPI_L3_DCH
	Level 3 Data Cache Hit

	0x8000001E
	PAPI_TLB_SD
	Translation lookaside buffer shootdowns (SMP)

	0x8000001F
	PAPI_CSR_FAL
	Failed store conditional instructions

	0x80000020
	PAPI_CSR_SUC
	Successful store conditional instructions

	0x80000021
	PAPI_CSR_TOT
	Total store conditional instructions

	0x80000022
	PAPI_MEM_SCY
	Cycles Stalled Waiting for Memory Access

	0x80000023
	PAPI_MEM_RCY
	Cycles Stalled Waiting for Memory Read

	0x80000024
	PAPI_MEM_WCY
	Cycles Stalled Waiting for Memory Write

	0x80000025
	PAPI_STL_ICY
	Cycles with No Instruction Issue

	0x80000026
	PAPI_FUL_ICY
	Cycles with Maximum Instruction Issue

	0x80000027
	PAPI_STL_CCY
	Cycles with No Instruction Completion

	0x80000028
	PAPI_FUL_CCY
	Cycles with Maximum Instruction Completion

	0x80000029
	PAPI_HW_INT
	Hardware interrupts

	0x8000002A
	PAPI_BR_UCN
	Unconditional branch instructions executed

	0x8000002B
	PAPI_BR_CN
	Conditional branch instructions executed

	0x8000002C
	PAPI_BR_TKN
	Conditional branch instructions taken

	0x8000002D
	PAPI_BR_NTK
	Conditional branch instructions not taken

	0x8000002E
	PAPI_BR_MSP
	Conditional branch instructions mispredicted

	0x8000002F
	PAPI_BR_PRC
	Conditional branch instructions correctly predicted

	0x80000030
	PAPI_FMA_INS
	FMA instructions completed

	0x80000031
	PAPI_TOT_IIS
	Total instructions issued

	0x80000032
	PAPI_TOT_INS
	Total instructions executed

	0x80000033
	PAPI_INT_INS
	Integer instructions executed

	0x80000034
	PAPI_FP_INS
	Floating point instructions executed

	0x80000035
	PAPI_LD_INS
	Load instructions executed

	0x80000036
	PAPI_SR_INS
	Store instructions executed

	0x80000037
	PAPI_BR_INS
	Total branch instructions executed

	0x80000038
	PAPI_VEC_INS
	Vector/SIMD instructions executed

	0x80000039
	PAPI_FLOPS
	Floating Point Instructions executed per second

	0x8000003A
	PAPI_RES_STL
	Cycles processor is stalled on resource

	0x8000003B
	PAPI_FP_STAL
	Cycles any FP units are stalled

	0x8000003C
	PAPI_TOT_CYC
	Total cycles

	0x8000003D
	PAPI_IPS
	Instructions executed per second

	0x8000003E
	PAPI_LST_INS
	Total load/store instructions executed

	0x8000003F
	PAPI_SYC_INS
	Sync. instructions executed

	0x80000040
	PAPI_L1_DCH
	L1 data cache hit

	0x80000041
	PAPI_L2_DCH
	L2 data cache hit

	0x80000042
	PAPI_L1_DCA
	L1 data cache access

	0x80000043
	PAPI_L2_DCA
	L2 data cache access

	0x80000044
	PAPI_L3_DCA
	L3 data cache access

	0x80000045
	PAPI_L1_DCR
	L1 data cache read

	0x80000046
	PAPI_L2_DCR
	L2 data cache read

	0x80000047
	PAPI_L3_DCR
	L3 data cache read

	0x80000048
	PAPI_L1_DCW
	L1 data cache write

	0x80000049
	PAPI_L2_DCW
	L2 data cache write

	0x8000004A
	PAPI_L3_DCW
	L3 data cache write

	0x8000004B
	PAPI_L1_ICH
	L1 instruction cache hits

	0x8000004C
	PAPI_L2_ICH
	L2 instruction cache hits

	0x8000004D
	PAPI_L3_ICH
	L3 instruction cache hits

	0x8000004E
	PAPI_L1_ICA
	L1 instruction cache accesses

	0x8000004F
	PAPI_L2_ICA
	L2 instruction cache accesses

	0x80000050
	PAPI_L3_ICA
	L3 instruction cache accesses

	0x80000051
	PAPI_L1_ICR
	L1 instruction cache reads

	0x80000052
	PAPI_L2_ICR
	L2 instruction cache reads

	0x80000053
	PAPI_L3_ICR
	L3 instruction cache reads

	0x80000054
	PAPI_L1_ICW
	L1 instruction cache writes

	0x80000055
	PAPI_L2_ICW
	L2 instruction cache writes

	0x80000056
	PAPI_L3_ICW
	L3 instruction cache writes

	0x80000057
	PAPI_L1_TCH
	L1 total cache hits

	0x80000058
	PAPI_L2_TCH
	L2 total cache hits

	0x80000059
	PAPI_L3_TCH
	L3 total cache hits

	0x8000005A
	PAPI_L1_TCA
	L1 total cache accesses

	0x8000005B
	PAPI_L2_TCA
	L2 total cache accesses

	0x8000005C
	PAPI_L3_TCA
	L3 total cache accesses

	0x8000005D
	PAPI_L1_TCR
	L1 total cache reads

	0x8000005E
	PAPI_L2_TCR
	L2 total cache reads

	0x8000005F
	PAPI_L3_TCR
	L3 total cache reads

	0x80000060
	PAPI_L1_TCW
	L1 total cache writes

	0x80000061
	PAPI_L2_TCW
	L2 total cache writes

	0x80000062
	PAPI_L3_TCW
	L3 total cache writes

	0x80000063
	PAPI_FML_INS
	Floating Multiply instructions

	0x80000064
	PAPI_FAD_INS
	Floating Add instructions

	0x80000065
	PAPI_FDV_INS
	Floating Divide instructions

	0x80000066
	PAPI_FSQ_INS
	Floating Square Root instructions

	0x80000067
	PAPI_FNV_INS
	Floating Inverse instructions

	0x80000068

	PAPI_FP_OPS

	Floating point operations executed

	

	Table 1: Standardized Event Definitions

Return Codes

All of the functions contained in the PAPI APIs return standardized error codes. Values greater than or equal to zero indicate success, less than zero indicates failure.

	Value
	Symbol
	Definition

	0
	PAPI_OK
	No error

	-1
	PAPI_EINVAL
	Invalid argument

	-2
	PAPI_ENOMEM
	Insufficient memory

	-3
	PAPI_ESYS
	A System or C library call failed, please check errno

	-4
	PAPI_ESBSTR
	Substrate returned an error, usually the result of an unimplemented feature

	-5
	PAPI_ECLOST
	Access to the counters was lost or interrupted

	-6
	PAPI_EBUG
	Internal error, please send mail to the developers

	-7
	PAPI_ENOEVNT
	Hardware Event does not exist

	-8
	PAPI_ECNFLCT
	Hardware Event exists, but cannot be counted due
to counter resource limitations

	-9
	PAPI_ENOTRUN
	No Events or EventSets are currently not counting

	-10
	PAPI_ISRUN
	EventSet is currently running

	-11
	PAPI_ENOEVST
	No such EventSet available

	-12
	PAPI_ENOTPRESET
	Event is not a valid preset

	-13
	PAPI_ENOCNTR
	Hardware does not support performance counters

	-14
	PAPI_EMISC
	'Unknown error' code

			

	

	Table 2: Return Codes

The Low Level API

The following functions represent the low level portion of the PAPI API. These functions provide greatly increased efficiency and functionality over the high level API presented in the next section. As mentioned in the introduction, the low level API is only as powerful as the substrate upon which it is built. Thus some features may not be available on every platform. The converse may also be true, that more advanced features may be available and defined in the header file. The user is encouraged to read the documentation for each platform carefully.

int PAPI_accum (int EventSet, long long *values)
This function accumulates (adds) the running or stopped counters in EventSet into the values array. In addition, it re-initializes the internal counters to zero.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_add_event (int EventSet, int Event)

This function modifies an existing EventSet. In PAPI3.0, at any time at most one eventset can be active. Returns the error code PAPI_ENOEVNT if Event cannot be counted on this platform. The addition of a conflicting event to an event set will return an error unless PAPI_SET_MPXRES has been set.

The return value is an integer that indicates whether the call succeeded (a non-negative integer corresponding to the index in the EventInfoArray where this event is stored) or failed (an error code).

int PAPI_add_events (int EventSet, int *Events, int number)
This function modifies an existing EventSet. The Events contained in *Events will be loaded into the EventSet. In PAPI3.0, at any time at most one eventset can be active. Returns the error code PAPI_ENOEVNT if Events cannot be counted on this platform. The addition of a conflicting event to an event set will return an error unless PAPI_SET_MPXRES has been set.

The return value is an integer that indicates whether the call succeeded (a non-negative integer corresponding to the index in the EventInfoArray where this event is stored) or failed (an error code).

int PAPI_add_pevent (int EventSet, int code, void *inout)
This function adds a native programmable Event to an existing EventSet. Such EventSets can only consist of one event, namely that which is specified in this call. Its semantics are very similar to that of ioctl() system call. inout points to an opaque data structure that is specific to the value in code. Higher level macros may be provided in the header file. Please check the documentation for each substrate. This function has a C binding only. (not yet implemented)

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_cleanup_eventset (int EventSet)
This function effectively cleans the target EventSet. It removes all of the hardware events which have been added to the EventSet. It can then be removed from existence with a call to PAPI_destroy_eventset. The EventSet must be stopped in order for this call to succeed.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_create_eventset (int *EventSet)
This function creates a new EventSet for use. This call is not thread safe.????

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_destroy_eventset (int *EventSet)
This function effectively removes an EventSet from existence. The EventSet must be empty in order for this call to succeed.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_enum_event (int *EventCode, int modifier)
This function updates EventCode to next valid value;

modifer can specify {all / available} for presets, or other values for native tables and may be platform specific (Major groups / all mask bits; P / M / E chip, etc) The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_event_code_to_name (int EventCode, char *out)

This function translates an EventCode from the user into the event name used by PAPI. Return code is PAPI_OK if successful, and appropriate error code otherwise.

int PAPI_event_name_to_code (char *in, int *out)

This function translates an event name to PAPI event code. Return value is PAPI_OK if successful and appropriate error code otherwise.

long PAPI_get_dmem_info(int option)

This function returns page size in bytes, Resident set size in pages or Size of process image in pages based on the option passed by the user. If the option is illegal, the function returns PAPI_EINVAL.

int PAPI_get_event_info(int EventCode, PAPI_event_info_t * info)

This function fills into a structure of type PAPI_event_info_t, which contains the description about an event, from the eventcode passed by the user if successful, and error if otherwise.

const PAPI_exe_info_t *PAPI_get_executable_info (void)
This function returns a pointer to a structure of type PAPI_exe_info_t, which contains path, name, start and end addresses for the program's text, data, and bss segments. For the definition of the structure, see papi.h Returns pointer to structure of type PAPI_exe_info_t if successful, and NULL if otherwise.

const PAPI_hw_info_t *PAPI_get_hardware_info (void)

This function returns a pointer to a structure of type PAPI_hw_info_t, which contains number of CPUs, nodes, vendor number/name for CPU, CPU revision, clock speed. For the definition of the structure, see papi.h Returns pointer to structure of type PAPI_hw_info_t if successful, and NULL if otherwise.

int PAPI_get_multiplex(int EventSet)
This function queries the multiplex status of the eventset. This function returns true(non zero) if the eventset’s status is multiplexing, and false(zero) if the eventset’s status is non-multiplexing.

int PAPI_get_opt (int option, PAPI_option_t *ptr)
This function queries the status of tunable options in the PerfAPI Library. "option" is an input/output parameter. The "ptr" structure is for input and output. Not all options fill the PAPI_option_t structure. This function has a C binding only.

The reader is urged to carefully read the PerfAPI Draft for a complete discussion of PAPI_get_opt. The file papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

long long PAPI_get_real_cyc (void)

This function returns a value in cycles, and can be used at the beginning and end of a section of code to calculate number of total cycles elapsed while the section executed. Returns time of type long long if successful, appropriate error code otherwise.

long long PAPI_get_real_usec (void)
This function returns a real (wall) time in micro seconds, and can be used at the beginning and end of a section of code to calculate real time in micro seconds for the section. Returns time of type long long if successful, appropriate error code otherwise.

const PAPI_shlib_info_t *PAPI_get_shared_lib_info(void)
This function returns a pointer to a structure of type PAPI_shlib_info_t, which contains path, name, start and end addresses for the shared libraries used by the program. For the definition of the structure, see papi.h Returns pointer to structure of type PAPI_shlib_info_t if successful, and NULL if otherwise.

int PAPI_get_thr_specific(int tag, void **ptr)
This function returns PAPI_OK if successful, and appropriate error code otherwise. Each thread can store up to PAPI_MAX_THREAD_STORAGE pointers and query them through this function. The pointer is stored in the address pointed by ptr. Tag is used to identify which pointer you want to retrieve.

long long PAPI_get_virt_cyc (void)

This function returns a value in cycles, and can be used at the beginning and end of a section of code to calculate number of virtual (process or thread) cycles elapsed in the section. Returns time of type long long if successful, appropriate error code otherwise.

long long PAPI_get_virt_usec (void)
This function returns a virtual time in micro seconds, and can be used at the beginning and end of a section of code to calculate user time in micro seconds for the section. Returns time of type long long if successful, appropriate error code otherwise.

int PAPI_is_initialized(void)
This function returns the initialization status of PAPI. It returns 0 if PAPI_library_init has not yet been called, or returns PAPI_LOW_LEVEL_INITED if PAPI_library_init is called by low level papi functions, or returns PAPI_HIGH_LEVEL_INITED if PAPI_library_init is called by high level papi functions.

int PAPI_library_init (int version)
This function initializes the PAPI library and has to be called before the low level PAPI can be used. The argument should always be set to PAPI_VER_CURRENT. The reason for this is that you may be linked with a shared library, so this will detect version skew. Don't forget PAPI_thread_init also has to be called before low level PAPI calls can be used in a threaded application.

int PAPI_list_events (int EventSet, int *Events, int *number)

This function decomposes EventSet into the hardware Events it contains. number is both an input and output parameter.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

void PAPI_lock (int lock)
Grabs access to the PAPI mutex variable. This function is provided to the user to have a platform independent call to an (hopefully) efficiently implemented mutex. This function has no return value. The user can only set lock to PAPI_USR1_LOCK or PAPI_USR2_LOCK. These two locks are equivalent.

int PAPI_multiplex_init (void)
This function enables and initializes multiplex support in the PAPI library. This allows a user to count more events than total physical counters by time sharing the existing counters at some loss in precision. Applications that make no use of multiplexing do not need to call this routine.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_set_multiplex (int EventSet)
This function converts a standard EventSet created by a call to PAPI_create_eventset() into an event set capable of handling multiplexed events. This must be done after calling PAPI_multiplex_init() , but prior to calling PAPI_start(). Events can be added to an eventset either before or after converting it into a multiplexed set, but the conversion must be done prior to using it as a multiplexed set.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_num_hwctrs(void)
This function returns the total physical performance counters.

int PAPI_num_events(int EventSet)
This function returns the total events in the eventset if successful, appropriate error code otherwise.

int PAPI_overflow (int EventSet, int EventCode, int threshold, int flags, PAPI_overflow_handler_t handler)
This function sets up an EventSet such that when it is PAPI_start()'ed, it begins to register overflows. This EventSet may have multiple events as overflow triggers. To turn off overflow, set the threshold to zero.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_perror (int code, char *destination, int length)
This function copies length worth of the error description string corresponding to code into destination. The resulting string is always null terminated. If length is 0, then the string is printed on stderr. The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_profil (unsigned short *buf, unsigned bufsiz, unsigned long offset, unsigned scale, int EventSet, int EventCode, int threshold, int flags)
This function sets the values in the PAPI_sprofil_t structure, if profiling is to be enabled for this EventSet. The EventSet must be in the stopped state for this call to succeed.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_query_event (int EventCode)
This function tests if the event designated by EventCode is supported by the current substrate.

If the answer is yes, the function returns PAPI_OK. If the answer is no, the function returns an error code.

int PAPI_read (int EventSet, long long *values)

This function copies the running or stopped counters in EventSet into the values array. Internal counters will not be re-initialized to zero.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

Int PAPI_register_thread(void)

This function notifies PAPI that a thread has 'appeared'. We lookup the thread list, if it does not exist we add it to the list.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_remove_event (int EventSet, int EventCode)
This function removes an Event from EventSet.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_remove_events (int EventSet, int *Events, int number)
This function removes the events listed in the Events array from EventSet.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_reset (int EventSet)
This function initializes the internal counters of the hardware Events contained in EventSet to zero.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_restore (void)
PAPI_save and PAPI_restore are for use with external libraries that wish to preserve the state of PAPI and the hardware counters. For instance a C++ instrumentation library will probably want to call PAPI_save() upon entry to it's functions and PAPI_restore() upon exit. These function calls map to whatever is the most efficient on the underlying platform for saving and restoring. Returns PAPI_OK if successful, and appropriate error code otherwise. (not yet implemented)

int PAPI_save (void)

see PAPI_restore description (not yet implemented)

int PAPI_set_debug (int level)

This function sets the default debug level for the PAPI library to one of three debug levels as defined in the papi.h header file. The current debug level is internally stored in the PAPI library and is used by the default internal PAPI error handler subroutine. The error handler is called by library routines on the occurence of recoverable errors.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_set_domain (int domain)
This function sets the execution domain in which events are counted. Here domain is one of the constants PAPI_DOM_USER, PAPI_DOM_MIN, PAPI_DOM_KERNEL, PAPI_DOM_OTHER, PAPI_DOM_ALL, PAPI_DOM_MAX, or PAPI_DOM_HWSPEC as defined in the header file. These constants are listed below and can also be found in the online PerfAPI Draft. The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_set_granularity (int granularity)
This function sets the measurement granularity in which the counters function. By default, the granularity is set to the most restrictive supported by the substrate. Returns PAPI_OK if successful, and appropriate error code otherwise. Granularity settings include per thread, process, process group, current cpu, and all cpus. For more information, see papi.h

int PAPI_set_opt (int option, PAPI_option_t *ptr)

This function sets specific options of the PerfAPI Library, its substrate, or specific EventSets. The PAPI_option_t structure represents a union of all the structures that can be arguments to the different options. In addition, there may exist machine specific options so please check the header file for documentation. This function has a C binding only.

The reader is urged to carefully read the PerfAPI Draft for a complete discussion of PAPI_set_opt. The file papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_set_thr_specific(int tag, void *ptr)
This function returns PAPI_OK if successful, and appropriate error code otherwise. The ptr is stored in an array with index tag. The ptr can be read late by PAPI_get_thr_specific function with the same tag parameter.

void PAPI_shutdown (void)
This is an exit function used by the PAPI Library to free resources and shut down when certain error conditions arise. This call is not necessary, but allows the user the capability to free memory and resources used by the PAPI Library.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_sprofil (PAPI_sprofil_t *prof, int profcnt, int EventSet,
 int EventCode, int threshold, int flags)
This function assumes a pre-initialized PAPI_sprofil_t structure and enables profiling for this EventSet. The EventSet must be in the stopped state for this call to succeed.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_start (int EventSet)
This function starts counting all of the hardware events contained in EventSet. All counters are implicitly set to zero before counting.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_state (int EventSet, int *status)
This function returns the state of the entire EventSet in status. If the call succeeds, then status is either PAPI_RUNNING or PAPI_STOPPED.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

int PAPI_stop (int EventSet, long long *values)
This function terminates the counting of all hardware events contained in EventSet. In addition, the counters contained in that EventSet are copied into the values array.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

char *PAPI_strerror (int code)
This function returns the corresponding English error string from the passed code. Returns NULL if code is invalid.

int PAPI_thread_init (unsigned long int (*id_fn)(void))
This function initializes thread support. The argument is a pointer to a function that returns the Thread ID of the currently running thread.

The return value is an integer that indicates whether the call succeeded (PAPI_OK) or failed (not PAPI_OK).

unsigned long int PAPI_thread_id (void)
This function calls the thread id function registered by PAPI_thread_init().

The return value is an unsigned long integer representing the thread id or (unsigned long int)-1.

void PAPI_unlock (int lock)
Unlocks the mutex acquired by a call to PAPI_lock() . This function has no return value.

int PAPI_write (int EventSet, long long *values)
This function assigns the values contained in the values array to the internal counters of the Events contained in the EventSet. Returns PAPI_OK if successful, and appropriate error code otherwise.

The High Level API

The simple interface implemented by the following eight routines allows the user to access and count specific hardware events. It should be noted that this API can be used in conjunction with the low level API. However, the high level API by itself is only able to access those events countable simultaneously by the underlying hardware. Note that the high level interface performs initialization implicitly and is not thread safe. Under the covers it calls PAPI_library_init(PAPI_VER_CURRENT) and PAPI_thread_init(NULL).

int PAPI_accum_counters(long long *values, int array_len)

Add the running counter values to the values in the values array. This call implicitly re-initializes the counters to zero and lets them continue to run upon return. Returns PAPI_OK if successful, and an appropriate error code otherwise.

int PAPI_num_counters(void)
This function returns the optimal length of the values array for the high level functions. This value corresponds to the number of hardware counters supported by the current substrate.

int PAPI_read_counters(long long *values, int array_len)

Read the running counter values into the values array. This call implicitly re-initializes the counters to zero and lets them continue to run upon return. Returns PAPI_OK if successful, and an appropriate error code otherwise.

int PAPI_start_counters(int *events, int array_len)

Start counting the events named in the events array. This function implicitly stops and initializes any counters running as a result of a previous call to PAPI_start_counters(). It is the user's responsibility to choose events that can be counted simultaneously by reading the vendor's documentation. The length of this array should be no longer than PAPI_MAX_EVENTS. Returns PAPI_OK if successful, and an appropriate error code otherwise.

int PAPI_stop_counters(long long *values, int array_len)

Stop the running counters and copy the counts into the values array. This is to be used in conjunction with PAPI_start_counters. Returns PAPI_OK if successful, and an appropriate error code otherwise.

int PAPI_flips(float *rtime, float *ptime, long_long *flpins, float *mflips)

Simplified single call to measure the number of floating point instructions executed and the MegaFlip rate, defined as the number of floating point instructions per microsecond. Note that not all floating point instructions are created equal: Some platforms implement a floating point multiply/add (FMA) as a single instruction; and a floating point square root is often more costly than a floating point add. Caution must be used in comparing measurements on different platforms. Each call to PAPI_flips returns the real (clock) time and process time, floating point instructions executed, and MFlips for the period since the last call. A call to PAPI_flips with flpins = -1 resets the counters. Returns PAPI_OK if successful, and an appropriate error code otherwise.

int PAPI_flops(float *rtime, float *ptime, long_long *flpops, float *mflops)

Simplified single call to measure the theoretical floating point operations executed rather than simple instructions , and the MegaFlop rate, defined as the number of floating point operations per microsecond. It uses the PAPI_FP_OPS event which attempts to 'correctly' account for, e.g., FMA undercounts and FP Store overcounts, etc. Caution must be used in comparing measurements on different platforms. Each call to PAPI_flops returns the real (clock) time and process time, floating point operations executed, and MFlops for the period since the last call. A call to PAPI_flops with flpops = -1 resets the counters. Returns PAPI_OK if successful, and an appropriate error code otherwise.

int PAPI_ipc(float *rtime, float *ptime, long_long *ins, float *ipc)

Simplified single call to measure the information on the instruction rate using the PAPI_TOT_INS event. Returns PAPI_OK if successful, and an appropriate error code otherwise.

PAPI Software Specification

- 19 -

