
Scheduling solutions for data-driven large-scale
applications

Ana Gainaru, Hongyang Sun, Guillaume Aupy, Padma Raghavan

May 11, 2018

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 1 / 27



Introduction

Figure: Memory access performance increase over time compared to the FLOPs
increase in HPC systems (data from Top500)

Peak FLOPs to memory bandwidth - 14.2% increase rate per year
Peak FLOPs to memory latency - 24.5% increase rate per year
Peak FLOPs to network bandwidth - 22.3% increase rate per year

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 2 / 27



Introduction

Computational power keeps increasing (Intrepid: 0.56 PFlops, Mira:
10 PFlops).
Bandwidth between processors and file system increases at slowlier
rate (Intrepid: 88 GB/s, Mira: 240 GB/s).
Applications generate more and more data.

⇒ Memory bound executions

Congestion
Wasted cycles waiting for data
Unpredictability (load imbalance, hardware changes)

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 3 / 27



Introduction

Computational power keeps increasing (Intrepid: 0.56 PFlops, Mira:
10 PFlops).
Bandwidth between processors and file system increases at slowlier
rate (Intrepid: 88 GB/s, Mira: 240 GB/s).
Applications generate more and more data.

⇒ Memory bound executions
Congestion
Wasted cycles waiting for data
Unpredictability (load imbalance, hardware changes)

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 3 / 27



Outline

1 Congestion
I/O scheduling
Simulations and experiments

2 Wasted cycles
Multi-resource scheduling

3 Unpredictability

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 4 / 27



I/O characterization of applications

[Work done with INRIA]

1. Periodicity: computation and I/O phases (write operations such as
checkpoints).

2. Synchronization: parallel identical jobs lead to synchronized I/O
operations.

3. Repeatability: jobs run several times with different inputs.
4. Burstiness: short burst of write operations. [Burst Buffers]

Idea: use the periodic behavior to compute periodic schedules.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 5 / 27



Model

K periodic applications: App(k)(w (k), vol(k)io , β(k)).

App(1) w (1) w (1) w (1)

App(2) w (2) w (2) w (2)
App(3) w (3) w (3) w (3)

Bandwidth

Time0
0

B

Figure: Scheduling the I/O of three periodic applications (top: computation,
bottom: I/O).

time(k)io =
vol(k)io

min(β(k) · b,B)

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 6 / 27



Objectives

rk : release time of App(k), dk time when last instance is finished.

ρ̃(k)(t) =

∑
i≤n(k)(t) w

(k,i)

t − rk
ρ(k) =

w (k)

w (k) + time(k)io

SysEfficiency: maximize peak performance:

maximize
1
N

K∑
k=1

β(k)ρ̃(k)(dk). (1)

Dilation: minimize largest slowdown:

minimize max
k=1..K

ρ(k)

ρ̃(k)(dk)
. (2)

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 7 / 27



Periodic schedules

Online algorithms add an overhead: lots of data transfers to a centralized
system ⇒ more congestion.

Bw

Time

Init

· · ·

Pattern Clean up

c T+c 2T+c 3T+c (n−2)T+c (n−1)T+c nT+c

(a) Periodic schedule (phases)

Bw

Time0
0

T

B

vol(1)io vol(1)io vol(1)io

vol(2)io vol(2)io vol(2)io
vol(3)io vol(3)iovol(4)io

initW(4)1endW(4)1 initIO(4)1

(b) Detail of I/O in a period/pattern

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 8 / 27



Finding a schedule

The problem is NP-complete, given the number of instances.
We want an offline, efficient (SysEfficiency, Dilation) heuristic.

Questions:
1. Pattern length T?
2. How many instances of each application?
3. How to schedule them in a proper way?

Answers:
1. Iterative search, pattern length grows exponentially.
2. Bound on the number of instances of each application

O

(
maxk (w (k)+time(k)io )

mink (w (k)+time(k)io )

)
.

3. We greedily insert instances: Insert-In-Pattern.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 9 / 27



Finding a schedule

The problem is NP-complete, given the number of instances.
We want an offline, efficient (SysEfficiency, Dilation) heuristic.

Questions:
1. Pattern length T?
2. How many instances of each application?
3. How to schedule them in a proper way?

Answers:
1. Iterative search, pattern length grows exponentially.
2. Bound on the number of instances of each application

O

(
maxk (w (k)+time(k)io )

mink (w (k)+time(k)io )

)
.

3. We greedily insert instances: Insert-In-Pattern.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 9 / 27



Outline

1 Congestion
I/O scheduling
Simulations and experiments

2 Wasted cycles
Multi-resource scheduling

3 Unpredictability

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 10 / 27



Experiment setup

Comparison between simulations and a real machine (32-node cluster
for a total of 640 cores, b = 0.01GB/s, B = 3GB/s).
We use periodic behaviors from the literature.

App(k) w (k) (s) vol(k)io (GB) β(k)

Turbulence1 (T1) 70 128.2 32,768
Turbulence2 (T2) 1.2 235.8 4,096
AstroPhysics (AP) 240 423.4 8,192
PlasmaPhysics (PP) 7554 34304 32,768

Table: Details of each application.

Set # T1 T2 AP PP
1 0 10 0 0
2 0 8 1 0
3 0 6 2 0
4 0 4 3 0
5 0 2 0 1
6 0 2 4 0
7 1 2 0 0
8 0 0 1 1
9 0 0 5 0
10 1 0 1 0

Table: Details of each set.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 11 / 27



Simulation

We compare results for SysEfficiency and Dilation using either PerSched
(with Tmax = 20Tmin and ε = 0.01) or online heuristics from [?].
We also compare our results to what we get on a real machine without any
scheduling algorithm.

Set Dilation SysEff
1 -9.33% +17.94%
2 -13.81% +7.01%
3 -15.81% +8.60%
4 -1.46% +1.09%
5 -0.49% +0.62%
6 -2.90% +6.96%
7 -0.49% +0.73%
8 -0.00% +0.00%
9 -0.40% +0.10%
10 -0.59% +0.10%

Table: Difference between PerSched and online heuristics.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 12 / 27



Results

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

(c) SysEfficiency/Upper bound

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10
Set

D
ila

tio
n

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

(d) Dilation

Figure: Performance for both experimental evaluation and theoretical (simulated)
results. The performance estimated by our model is accurate within 3.8% for
periodic schedules and 2.3% for online schedules.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 13 / 27



Scaling results

Figure: Comparison between online heuristics and periodic on synthetic
applications, for different ratios of compute over I/O bandwidth.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 14 / 27



Future

Offline periodic scheduling: Up to 18% SysEfficiency, 16% Dilation
improvement compared to online heuristics.
We validated the model ⇒ more simulations can be conducted
without requiring actual experiments (at scale K stays the same,
difference between N.b and B increases).
Deal with variability

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 15 / 27



Outline

1 Congestion
I/O scheduling
Simulations and experiments

2 Wasted cycles
Multi-resource scheduling

3 Unpredictability

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 16 / 27



Multi-resource scheduling

Applications are modeled as independent tasks whose execution times
vary depending on the different resources available to them
Schedule multiple resources to each application in order to minimize
makespan

Figure: An example of list scheduling and pack scheduling for the same set of
tasks (packs separated by dotted red lines)

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 17 / 27



Model

Two solutions

1. Two-phase approach, similarly to the one considered in single-resource
scheduling

Phase 1: Determines a resource allocation matrix for the tasks
Phase 2: Constructs a rigid schedule based on the fixed resource
allocation from the first phase

2. Transformation strategy that reduces the multi resource scheduling
problem to the 1- resource scheduling problem, which is then solved and
whose solution is transformed back to the original problem.

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 18 / 27



Phase 1

Figure: Profiles of the triad application in the Stream benchmark when its
memory footprint occupies the entire fast memory

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 19 / 27



Phase 2

List scheduler
Arrange the set of tasks in a list
When a task completes, scan the list of remaining tasks in sequence
and schedules the first one that fits (there is sufficient amount of
resource to satisfy the task under each resource type)
The complexity of the algorithm is O(n2 ∗ d), since scheduling each
task incurs a cost of O(n ∗ d) by scanning the taskList and updating
the resource availability.

Pack scheduler
Tasks are sorted in non-increasing order of execution times
Tasks are assigned one by one to the last pack if they fit
Otherwise, a new pack is created and the task is assigned to the new
pack
The complexity of the algorithm is O(n(logn + d)) , which is
dominated by the sorting of the tasks and by checking the fitness of
each task in the pack

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 20 / 27



Results

Figure: Makespan comparison with and without scheduling fast memory as a
resource

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 21 / 27



Results

Figure: Performance with up to four different categories of resources

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 22 / 27



Future

The list-based solutions to explore more effectively the gaps between
successive task executions

The makespan difference between the two scheduling paradigms
becomes smaller as more resources are included,

Transform-based solutions are shown to be superior compared to the
direct-based solutions in terms of both normalized makespan and
algorithms’ running times
Schedulers that work on application models (include variability)

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 23 / 27



Outline

1 Congestion
I/O scheduling
Simulations and experiments

2 Wasted cycles
Multi-resource scheduling

3 Unpredictability

Ana Gainaru Scheduling solutions for data-driven large-scale applicationsMay 11, 2018 24 / 27


	Congestion
	I/O scheduling
	Simulations and experiments

	Wasted cycles
	Multi-resource scheduling

	Unpredictability



