Scheduling solutions for data-driven large-scale

applications

Ana Gainaru, Hongyang Sun, Guillaume Aupy, Padma Raghavan

May 11, 2018

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 1/27

Introduction

—— GFLOPS/Memory bandwidth
GFLOPS/Memory latency
—— GFLOPS/Network bandwidth

Balance ratio (FLOPS/memory access)

1990 1994 1997 1999 2005 2006 2008 2011 2013 2014 2015 2017
Year

Figure: Memory access performance increase over time compared to the FLOPs
increase in HPC systems (data from Top500)

Peak FLOPs to memory bandwidth - 14.2% increase rate per year
Peak FLOPs to memory latency - 24.5% increase rate per year
Peak FLOPs to network bandwidth - 22.3% increase rate per year

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 2 /27

Introduction

e Computational power keeps increasing (Intrepid: 0.56 PFlops, Mira:
10 PFlops).

@ Bandwidth between processors and file system increases at slowlier
rate (Intrepid: 88 GB/s, Mira: 240 GB/s).

@ Applications generate more and more data.

= Memory bound executions

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 3/27

Introduction

Computational power keeps increasing (Intrepid: 0.56 PFlops, Mira:
10 PFlops).

@ Bandwidth between processors and file system increases at slowlier
rate (Intrepid: 88 GB/s, Mira: 240 GB/s).

Applications generate more and more data.

= Memory bound executions

Congestion

Wasted cycles waiting for data

Unpredictability (load imbalance, hardware changes)

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 3/27

Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments

© Wasted cycles
@ Multi-resource scheduling

© Unpredictability

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 4 /27

|/O characterization of applications

[Work done with INRIA]

1. Periodicity: computation and I/O phases (write operations such as
checkpoints).

2. Synchronization: parallel identical jobs lead to synchronized 1/0

operations.

Repeatability: jobs run several times with different inputs.

4. Burstiness: short burst of write operations. [Burst Buffers]

w

Idea: use the periodic behavior to compute periodic schedules.

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 5 /27

App® PO O T =® 1
) o n I o O w@ 1 [0
Appl? wo] [e] e

i
|
Bandwidth 4|
L e o ol
|
| I
|
0
0

Figure: Scheduling the 1/O of three periodic applications (top: computation,
bottom: 1/0).

(K) vol (%)

time,)~ = —min(ﬁ(k) "5 B)

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 6 /27

re: release time of App(K), dx time when last instance is finished.

ki
59 (t) = Lizntogy W oK) = Wl
t—rk w(k) 4+ timei(:)

SysEfficiency: maximize peak performance:

K
o1 K) ~(k
maximize kg_l B 50 (dy). (1)

Dilation: minimize largest slowdown:
k

minimize max I (dy)’ (2)

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 7/ 27

Periodic schedules

Online algorithms add an overhead: lots of data transfers to a centralized
system =- more congestion.

Bw

77777777777 977777777777 7777777777777 7777777777777 7777777774777 777777777
00000000000020000000500000250000007 00000055000825000022500422500007%
000000000000000000005000000550000007 00000000000000000000504205500000507
0000005000000500000500000055000070) 00000050000405000005520920520000557
A s s 000000000000000000005004205500000507
000000050000005000005500000550000% 00000055000005000005509205200000507
000000000000000000000000000050000007 A A
A A Y s o N

e
< T+c 2T+c 3T+c (n—2)T+c (n—1)T+c nT+c Time
—— —
Init Pattern Clean up
Bw
B —_—Ld VIIIIIIIIIIIIII IV 1177277777777 77/ Jptsizzzzl T
1000005500000 000002550020557 J
1000005500008 100005550022557 J
3) 1000025500000 (4) 000052550022557 / 3)
ol (2) [2772722555257 vol 2000000000000007 7 vol
© vol® (2220200000020 D NN R s N e 2 o
io 7000000 vol: 750000000000000 dvol N Y
7050220 io 0022222222222259V0 " 1)
7000 2 /
/| 5 2 J
7z 2 /
Vo 7777 vol, 2 7]
0 2220 2 2
?

0 enaw(® init10{" ® TTime

(b) Detail of 1/0 in a period/pattern

a Gainaru heduling solutions for data-driven large May 11, 201 8 /27

Finding a schedule

The problem is NP-complete, given the number of instances.
We want an offline, efficient (SysEfficiency, Dilation) heuristic.

Questions:

1. Pattern length T7

2. How many instances of each application?
3. How to schedule them in a proper way?

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 9 /27

Finding a schedule

The problem is NP-complete, given the number of instances.
We want an offline, efficient (SysEfficiency, Dilation) heuristic.

Questions:

1. Pattern length T7

2. How many instances of each application?
3. How to schedule them in a proper way?

Answers:
1. lterative search, pattern length grows exponentially.
2. Bound on the number of instances of each application
0 <maxk(w(k)+timei(:))>
mink(w(k)—f—timei(:)) '

3. We greedily insert instances: Insert-In-Pattern.

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 9 /27

Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 10 / 27

Experiment setup

e Comparison between simulations and a real machine (32-node cluster
for a total of 640 cores, b = 0.01GB/s, B = 3GB/s).

@ We use periodic behaviors from the literature.

Set #{ T1| T2 | AP | PP

1 |{0|10[0 |0

2 (0|81 0

App) w® (s)[vol®™ (GB)| p®|| 3 |0 |6 |20
Turbulencel (T1) 70 128.2(32,768| | 4 |0 |4 | 3 |0
Turbulence2 (T2) 1.2 235.8| 4,096 5 10]2]0 1
AstroPhysics (AP) 240 423.4) 8192/ | 6 | 0|24 |0
PlasmaPhysics (PP)| 7554 34304(32,768| | 7 |1 | 2|0 |0
8 00|11

Table: Details of each application. 9 lolols o
00]1(0]|1]|0

Table: Details of each set.

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 11 / 27

We compare results for SysEfficiency and Dilation using either PerSched
(with Tmax = 20 Tpmin and € = 0.01) or online heuristics from [?].
We also compare our results to what we get on a real machine without any

scheduling algorithm.

Dilation

w
[0}
+

SysEff

-9.33%

+17.94%

-13.81%

+7.01%

-15.81%

+8.60%

-1.46%

+1.09%

-0.49%

+0.62%

-2.90%

+6.96%

-0.49%

+0.73%

-0.00%

+0.00%

O O N PR|W N~

-0.40%

+0.10%

-0.59%

fuy
o

+0.10%

Table: Difference between PerSched and online heuristics.

Ana Gainaru Scheduling solutions for data-driven large

May 11, 2018 12 / 27

Results

vol R R vo. D Periodic (expe)
S omeivon
4 Online (simu)
“E" 06
B e
- S
04l A onios smu)
i H H i 5 - 6 4 8 $ 10 i 5 - 6 7 8 s 10
(c) SysEfficiency/Upper bound (d) Dilation

Figure: Performance for both experimental evaluation and theoretical (simulated)
results. The performance estimated by our model is accurate within 3.8% for
periodic schedules and 2.3% for online schedules.

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 13 / 27

Scaling results

—— System efficiency

18 s
Dilation

16
&
€
£
¢ 14
>
o
g
E

1.2

1.0

2 4 8 16 32 64 128 256 512 1024

Ratio

Figure: Comparison between online heuristics and periodic on synthetic
applications, for different ratios of compute over I/O bandwidth.

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 14 / 27

e Offline periodic scheduling: Up to 18% SysEfficiency, 16% Dilation
improvement compared to online heuristics.

@ We validated the model = more simulations can be conducted
without requiring actual experiments (at scale K stays the same,
difference between N.b and B increases).

o Deal with variability

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 15 / 27

Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments

© Wasted cycles
@ Multi-resource scheduling

© Unpredictability

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 16 / 27

Multi-resource scheduling

@ Applications are modeled as independent tasks whose execution times
vary depending on the different resources available to them

@ Schedule multiple resources to each application in order to minimize
makespan

Resource
~
v |a
<
©
Resource
L :
~
"
> |5
<
®
g

Time Time

(a) list scheduling (b) pack scheduling

Figure: An example of list scheduling and pack scheduling for the same set of
tasks (packs separated by dotted red lines)

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 17 / 27

Two solutions

1. Two-phase approach, similarly to the one considered in single-resource
scheduling

@ Phase 1: Determines a resource allocation matrix for the tasks

@ Phase 2: Constructs a rigid schedule based on the fixed resource
allocation from the first phase

2. Transformation strategy that reduces the multi resource scheduling
problem to the 1- resource scheduling problem, which is then solved and
whose solution is transformed back to the original problem.

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 18 / 27

:ucomey Wl uonndaxy

n
o~

e
~N

n
~—

e
—

n
S

Figure: Profiles of the triad application in the Stream benchmark when its

memory footprint occupies the entire fast memory

19 / 27

Scheduling solutions for data-driven large May 11, 2018

Ana Gainaru

List scheduler

@ Arrange the set of tasks in a list

@ When a task completes, scan the list of remaining tasks in sequence
and schedules the first one that fits (there is sufficient amount of
resource to satisfy the task under each resource type)

e The complexity of the algorithm is O(n? * d), since scheduling each
task incurs a cost of O(n * d) by scanning the taskList and updating
the resource availability.

Pack scheduler

@ Tasks are sorted in non-increasing order of execution times

@ Tasks are assigned one by one to the last pack if they fit

@ Otherwise, a new pack is created and the task is assigned to the new

pack

The complexity of the algorithm is O(n(logn + d)) , which is
dominated by the sorting of the tasks and by checking the fitness of
each task in the pack

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 20 / 27

400

[cores only
| |EZ2 cores + MCDRAM

w
o
o

Makespan (Second)
S
o

100/

e R
¢ g S
e N\ W o

N N S e L

Figure: Makespan comparison with and without scheduling fast memory as a
resource

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 21 /27

2.5 : : :
—— D-LIST(LPT)
§ — T-LIST(LPT)
a S| — D-PACK(FF)
- 7 T-PACK(FF) T
s
=] T ? T -
N O == I =
© 1.5) é, L -
g % N L L%
= =5
1 e

d=1 d=2 d=3 d=4

Figure: Performance with up to four different categories of resources

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 22 /27

@ The list-based solutions to explore more effectively the gaps between
successive task executions

o The makespan difference between the two scheduling paradigms
becomes smaller as more resources are included,

@ Transform-based solutions are shown to be superior compared to the
direct-based solutions in terms of both normalized makespan and
algorithms’ running times

@ Schedulers that work on application models (include variability)

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 23 /27

Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments

© Wasted cycles
@ Multi-resource scheduling

© Unpredictability

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 24 /27

	Congestion
	I/O scheduling
	Simulations and experiments

	Wasted cycles
	Multi-resource scheduling

	Unpredictability

