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Introduction

—— GFLOPS/Memory bandwidth
GFLOPS/Memory latency
—— GFLOPS/Network bandwidth

Balance ratio (FLOPS/memory access)
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Figure: Memory access performance increase over time compared to the FLOPs
increase in HPC systems (data from Top500)

Peak FLOPs to memory bandwidth - 14.2% increase rate per year
Peak FLOPs to memory latency - 24.5% increase rate per year
Peak FLOPs to network bandwidth - 22.3% increase rate per year
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Introduction

e Computational power keeps increasing (Intrepid: 0.56 PFlops, Mira:
10 PFlops).

@ Bandwidth between processors and file system increases at slowlier
rate (Intrepid: 88 GB/s, Mira: 240 GB/s).

@ Applications generate more and more data.

= Memory bound executions
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Introduction

Computational power keeps increasing (Intrepid: 0.56 PFlops, Mira:
10 PFlops).

@ Bandwidth between processors and file system increases at slowlier
rate (Intrepid: 88 GB/s, Mira: 240 GB/s).

Applications generate more and more data.

= Memory bound executions

Congestion

Wasted cycles waiting for data

Unpredictability (load imbalance, hardware changes)
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Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments

© Wasted cycles
@ Multi-resource scheduling

© Unpredictability
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|/O characterization of applications

[Work done with INRIA]

1. Periodicity: computation and I/O phases (write operations such as
checkpoints).

2. Synchronization: parallel identical jobs lead to synchronized 1/0

operations.

Repeatability: jobs run several times with different inputs.

4. Burstiness: short burst of write operations. [Burst Buffers]

w

Idea: use the periodic behavior to compute periodic schedules.
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Figure: Scheduling the 1/O of three periodic applications (top: computation,
bottom: 1/0).
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re: release time of App(K), dx time when last instance is finished.

ki
59 (t) = Lizntogy W oK) = Wl
t—rk w(k) 4+ timei(:)

SysEfficiency: maximize peak performance:

K
o1 K) ~(k
maximize kg_l B 50 (dy). (1)

Dilation: minimize largest slowdown:
k

minimize max I (dy)’ (2)

Ana Gainaru Scheduling solutions for data-driven large May 11, 2018 7/ 27



Periodic schedules

Online algorithms add an overhead: lots of data transfers to a centralized
system =- more congestion.

Bw

77777777777 977777777777 7777777777777 7777777777777 7777777774777 777777777
00000000000020000000500000250000007 00000055000825000022500422500007%
000000000000000000005000000550000007 00000000000000000000504205500000507
0000005000000500000500000055000070) 00000050000405000005520920520000557
A s s 000000000000000000005004205500000507
000000050000005000005500000550000% 00000055000005000005509205200000507
000000000000000000000000000050000007 A A
A A Y s o N

e
< T+c 2T+c 3T+c (n—2)T+c (n—1)T+c nT+c Time
—— —
Init Pattern Clean up
Bw
B —_—Ld VIIIIIIIIIIIIII IV 1177277777777 77/ Jptsizzzzl T
1000005500000 000002550020557 J
1000005500008 100005550022557 J
3) 1000025500000 (4) 000052550022557 / 3)
ol (2) [2772722555257 vol 2000000000000007 7 vol
© vol® (2220200000020 D NN R s N e 2 o
io 7000000 vol: 750000000000000 dvol N Y
7050220 io 0022222222222259V0 " 1)
7000 2 /
/| 5 2 J
7z 2 /
Vo 7777 vol, 2 7]
0 2220 2 2
?

0 enaw(® init10{" ® TTime

(b) Detail of 1/0 in a period/pattern
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Finding a schedule

The problem is NP-complete, given the number of instances.
We want an offline, efficient (SysEfficiency, Dilation) heuristic.

Questions:

1. Pattern length T7

2. How many instances of each application?
3. How to schedule them in a proper way?
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Finding a schedule

The problem is NP-complete, given the number of instances.
We want an offline, efficient (SysEfficiency, Dilation) heuristic.

Questions:

1. Pattern length T7

2. How many instances of each application?
3. How to schedule them in a proper way?

Answers:
1. lterative search, pattern length grows exponentially.
2. Bound on the number of instances of each application
0 <maxk(w(k)+timei(:))>
mink(w(k)—f—timei(:)) '

3. We greedily insert instances: Insert-In-Pattern.
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Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments
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Experiment setup

e Comparison between simulations and a real machine (32-node cluster
for a total of 640 cores, b = 0.01GB/s, B = 3GB/s).

@ We use periodic behaviors from the literature.

Set #{ T1| T2 | AP | PP

1 |{0|10[0 |0

2 (0|81 0

App) w® (s)[vol®™ (GB)| p®|| 3 |0 |6 |20
Turbulencel  (T1) 70 128.2(32,768| | 4 |0 |4 | 3 |0
Turbulence2  (T2) 1.2 235.8| 4,096 5 10]2]0 1
AstroPhysics  (AP) 240 423.4) 8192/ | 6 | 0|24 |0
PlasmaPhysics (PP)| 7554 34304(32,768| | 7 |1 | 2|0 |0
8 00|11

Table: Details of each application. 9 lolols o
00]1(0]|1]|0

Table: Details of each set.
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We compare results for SysEfficiency and Dilation using either PerSched
(with Tmax = 20 Tpmin and € = 0.01) or online heuristics from [?].
We also compare our results to what we get on a real machine without any

scheduling algorithm.

Dilation
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Table: Difference between PerSched and online heuristics.
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Results
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Figure: Performance for both experimental evaluation and theoretical (simulated)
results. The performance estimated by our model is accurate within 3.8% for
periodic schedules and 2.3% for online schedules.
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Scaling results

—— System efficiency
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Figure: Comparison between online heuristics and periodic on synthetic
applications, for different ratios of compute over I/O bandwidth.
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e Offline periodic scheduling: Up to 18% SysEfficiency, 16% Dilation
improvement compared to online heuristics.

@ We validated the model = more simulations can be conducted
without requiring actual experiments (at scale K stays the same,
difference between N.b and B increases).

o Deal with variability
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Outline

@ Congestion
@ |/0O scheduling
@ Simulations and experiments

© Wasted cycles
@ Multi-resource scheduling

© Unpredictability
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Multi-resource scheduling

@ Applications are modeled as independent tasks whose execution times
vary depending on the different resources available to them

@ Schedule multiple resources to each application in order to minimize
makespan
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(a) list scheduling (b) pack scheduling

Figure: An example of list scheduling and pack scheduling for the same set of
tasks (packs separated by dotted red lines)
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Two solutions

1. Two-phase approach, similarly to the one considered in single-resource
scheduling

@ Phase 1: Determines a resource allocation matrix for the tasks

@ Phase 2: Constructs a rigid schedule based on the fixed resource
allocation from the first phase

2. Transformation strategy that reduces the multi resource scheduling
problem to the 1- resource scheduling problem, which is then solved and
whose solution is transformed back to the original problem.
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Figure: Profiles of the triad application in the Stream benchmark when its

memory footprint occupies the entire fast memory
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List scheduler

@ Arrange the set of tasks in a list

@ When a task completes, scan the list of remaining tasks in sequence
and schedules the first one that fits (there is sufficient amount of
resource to satisfy the task under each resource type)

e The complexity of the algorithm is O(n? * d), since scheduling each
task incurs a cost of O(n * d) by scanning the taskList and updating
the resource availability.

Pack scheduler

@ Tasks are sorted in non-increasing order of execution times

@ Tasks are assigned one by one to the last pack if they fit

@ Otherwise, a new pack is created and the task is assigned to the new

pack

The complexity of the algorithm is O(n(logn + d)) , which is
dominated by the sorting of the tasks and by checking the fitness of
each task in the pack
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Figure: Makespan comparison with and without scheduling fast memory as a
resource
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Figure: Performance with up to four different categories of resources
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@ The list-based solutions to explore more effectively the gaps between
successive task executions

o The makespan difference between the two scheduling paradigms
becomes smaller as more resources are included,

@ Transform-based solutions are shown to be superior compared to the
direct-based solutions in terms of both normalized makespan and
algorithms’ running times

@ Schedulers that work on application models (include variability)
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