BONSAI:
Benchtesting OpeN Software
Autotuning Infrastructure

Matthew Bachstein
ICL Lunch Talk
1 Dec 2017

Why BONSAI?

INSIGHT |
Search Space
Generation

i Data

Analysis
Visualization y

Search
Space
Definition

Parameterized
Stencil

Parallel

. Machme
Benchtesting
Engine Learning

Data Collection
and Preparation

FAST CODE
FASTER CODE
YET FASTER CODE

* Accelerators have multiple

hardware parameters

e Kernels can have many
parameters

e Data can have many different
layouts

e Data can have many different
characteristics (e.g. Sparse)

Why BONSAI?

e So, can we tune over all these
parameters in a framework
agnostic way?

* Necessitates a very large
parameter search space

e ~1075, 1076, or higher

* Need to do Massive parallel
tuning sweeps to achieve
reasonable timing

What is BONSAI?

* A full autotuning infrastructure
for computational kernels.

* Language agnostic

* You give us a kernel, we give
you:
* A DSL to specify your parameter
space (LANAI)

* A runtime that will
compile/exec/log all of the
configurations

* A visualization/analysis
component

.y

THE Al

ON

P

LT OF

SKI

LANAI: LANguage for Autotuning Infrastructure

* Python based DSL g ! o threado din_ys
e Uses Python syntax and familiar
Python functions

dim_m, max_threads_dim_x+1, dim_m

i DEfineS (iteratorsi: :d-im_n, max_threads_dim_y+1, dim_n
* Each iterator defines the range of " 2 TSRS T B, B SRl S S22
d parameter arithmetic, precision):
e Can perform arithmetic, boolean P e matie oo mors = om:

comparison, composition, etc.

arithmetic == Real:

LANAI cont.

* LANAI also allows for constraint
conditions that prune the overall
search space

threads_per_block) :
threads_per_block > max_threads_per_block

regs_per_thread):
regs_per_thread > max_registers_per_thread

* Combined -> complex
optimization problem

regs_per_block) :
regs_per_block > max_regs_per_block

* Combinatorial explosion

shmem_per_block) :
shmem_per_block > max_shared_mem_per_block

ANAI cont.

for (dim_m = 1; dim_m < 1025; dim_m += 1)
for (trans_a = 0; trans_.a < 1; trans_a += 1)
for (trans_b = 0; trans_b < 1; trans_b += 1)
for (blk_k = 1; blk_k < (min(1024, 1024) + 1); blk_k += 1) {
if (dim_vec_delta != 0)
for (dim_vec = dim_vec_start; dim_vec < dim_vec_bound; dim_vec += dim_vec_delta)
for (dim_n = 1; dim_n < 1025; dim_n += 1)
for (tex_-b = 0; tex_b < 2; tex_b += 1)
for (tex.a = 0; tex-a < 2; tex-a += 1) {
threads_per_block = dim_m * dim_n;
if (threads_per_block > max_threads_per_block) continue;
if ((threads_per_block % warp_size) != 0) continue;
if (vec_mul_delta != 0)
for (vec_mul = vec_mul_start; vec_mul < vec_mul_bound; vec_mul += vec_mul_delta) {
if (blk-m_delta != 0)
for (blk-m = blk-m_start; blk-m < blk_m_bound; blk-m += blk-m_delta) {
if (blk-n_delta != 0)
for (blk-n = blk_n_start; blk_n < blk_n_bound; blk_n += blk_n_delta) {
if (shmem_per_block > max_shared_mem_per_block) continue;
if (regs-per-thread > max-registers_per_thread) continue;
(regs_per_block > max_regs_per_block) continue;
((fmas_per_block / loads_per_block) < min_fmas_per_load) continue;
(
(
(

max_threads_by_shmem < min_threads_per_multi_processor) continue;
max_threads_by_regs < min_threads_per_multi_processor) continue;
dim_n_b_delta != 0)
for (dim_n_b = dim_n_b_start; dim_n_b < dim_n_b_bound; dim_n_b += dim_n_b_delta) {
if (dim_n_a_delta != 0)
for (dim_n_a =dim_n_a_start; dim_n_a < dim_n_a_bound; dim_n_a +=dim_n_a_delta) {
if (dim_m_a_delta != 0)
for (dim_m_a=dim_m_a_start; dim_m_a <dim_m_a_bound; dim_m_a+=dim_m_a_delta){
if (dim_m_b_delta != 0)
for (dim_m_b=dim_m_b_start; dim_m_b<dim_m_b_bound; dim_m_b+=dim_m_b_delta){
if ((dim_m_.a * dim_n_a) != threads_per_block) continue;
if ((dim_m_b * dim_n_b) != threads_per_block) continue;
if (((((blk-k % (dim_m_b * dim_vec)) != 0) || ((blk-n % dim_n_b) != 0))))
continue;
if (((((blk-m % (dim_m_a * dim_vec)) != 0) || ((blk-k % dim_n_a) != 0))))
continue;
idx +=1;
record(trans_a, trans_b, dim_m, dim_n, blk-m, blk-n, blk_k, dim_vec, vec_mul,
dim_m_a, dim_n_a, dim_m_b, dim_n_b, tex_a, tex_b, idx);

133333333

f
f
f
if
f
f

LANAI compiles to C code

* Accelerated with OpenMP

* Current work on optimizing the
insertion points

* C code generates a CSV file with
valid configurations

Runtime

* Parameters are passed as
compile time defines

e E.g. -DBLK_N=32’
How to
* Manager/Worker type process Water BOWEAEC ZTCF
» Compile step | —

* Specify number of compile
processes at once

* Execution step
* Working on multiple gpu support

Runtime cont

* Modular runtime
* Single node
* Cluster
e Support Cross Compilation (Titan)

* Multiple varieties

 Staged/full execution
* Splits the compile/exec stages

* MPI/No MPI
* Any combination

Visualization

* Goal: Provide useful analytics
about kernel performance

* Performance/parameter
interaction

e Currently Work in Progress

* Some architectural changes are
needed first...

Near Term

* More Tutorials
* OpenCV
* Packaged Cuda examples

* Optimize the LANAI compiler
* Find optimal parallelization points

e Combat the combinatorial
explosion

e Data coalesing

First apply all the wire .

Longer Term

* Add SQL logging option

e Easier to integrate ML tools
* Dynamic job scheduler

e Hardware counter collection
wrappers

* PAPI, CUPTI, etc.
* More robust error catching

FIn
* Questions? * Required bad joke

* How do you catch a squirrel?

* Climb up a tree, and act like a
nut.

