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Motivation: We have to focus on data movement and memory!

Operation approximate energy cost .

DP floating point multiply-add 100 pJ
DP DRAM read-to-register 4800 pJ
DP word transmit-to-neighbor 7500 pJ
DP word transmit-across-system 9000 pJ

\
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Motivation: We have to focus on data movement and memory!

Which are the communication-intensive algorithms?
* Sorting
e GraphAlgorithms

e Sparselinear Algebra
e SparseDirect Solvers (1D problems, 2D problems)*
* Sparse lterative Solvers (2D problems on manycore, 3D problems)*
* Multigrid , Fast Multipole Method (FMM), Krylov Methods ...

* Preconditioning: Incomplete LU, (block-) Jacobi, Gauss-Seidel...

*Mike Heroux (SNL)
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Motivation: We have to focus on data movement and memory!
Which are the communication-intensive algorithms?
* Sorting
e GraphAlgorithms
e Sparselinear Algebra

e SparseDirect Solvers (1D problems, 2D problems)*
* Sparse lterative Solvers (2D problems on manycore, 3D problems)*

* Multigrid, Fast Multipole Method«FVIM), Kryiav Methods ...
(block-) Jacobi, GGauss-Seidel...

* Preconditioning: Incomplete L
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Block-Jacobi Preconditioning

» Jacobi method based on diagonal scaling: P — dz’a,g(A) .

e (Canbe used asiterative solver:

gF D) = (k) 4 p=lp — p=lgg(F)

~

e Canbe used as preconditioner: A=P 1A, 5 = P_lb
Ar=be Az =b
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Block-Jacobi Preconditioning

» Jacobi method based on diagonal scaling: P — dia,g(A)

e Canbe used asiterative solver:

g R = k) p=lp — p=1 g

* Canbe used as preconditioner: A=P 1A, b= P_lb

~

Az =be Az = b

« Block-Jacobiis based on block-diagonal scaling: P — dia,gB (A)
* Large set of small diagonal blocks.
* Eachblock corresponds to one (small) linear system.
* Larger blocks typicallyimprove convergence.
* Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.
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Inversion-based Block-Jacobi Preconditioning

Preconditioner

setup

I D AN Y

: Generate preconditioner before iterative solver starts.

Inversion of diagonal blocks
2m= FLOPS for block of size m

®

Extract diagonal block from
sparse data structure.

''''''

VP dihd

Invert diagonal block.

Insert inverse as diagonal block
into preconditioner matrix.
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Inversion-based Block-Jacobi Preconditioning

E { Generate preconditioner before iterative solver starts. .
o i
5 S Inversion of diagonal blocks
4_, -
S % 2m? FLOPS for block of size m
()
o

Apply the preconditioner i solver iteration via:y 1= P_lx

Matrix-vector muliply per block gemv

\

Preconditioner
application

|
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Inversion-based Block-Jacobi Preconditioning

«  Cost of Inversion: Z me .
E Generate preconditioner before iterative solver starts. 2m; FLOPS for block of size m; blocks
é — . Inversion of diagonal blocks
S 0 2m? FLOPS for block of size m
&

Apply the preconditioner i solver iteration via:y 1= P_lx

Matrix-vector muliply per block gemv

\

Preconditioner
application
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Inversion-based Block-Jacobi Preconditioning

«  Cost of Inversion: E Qm?
2m;3 FLOPS for block of size m;.

E i Generate preconditioner before iterative solver starts. blocks
o : -
5 § Inversion of diagonal blocks * Cost of I32recond|t|oner application: 5
5% 5m3 ELOPS for block of size m m;” FLOPS for block of size m;: E 2m;
o : _ blocks
o ; « Total memory consumption:
.................. ST Z m2
5 » ; . o 1 v
: Apply the preconditioner i solver iteration via:y 1= P 'z blocks

Matrix-vector muliply per block gemv

Preconditioner
application
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Inversion-based Block-Jacobi Preconditioning

«  Cost of Inversion: E Qm?
- i - : . 3 [ .
Q : Generate preconditioner before iterative solver starts. 2m;” FLOPS for block of size m, blocks
o :
5 El Inversion of diagonal blocks * Cost of P2reconditioner application: 5
5% | 2m?® FLOPS for block of size m m;?FLOPS for block of size m;: E 2m;
o : _ blocks
o : « Total memory consumption:
.................. B eararansnsnsnsnsnsnsasasasasarasasanasanananans E ( 2
i 1 M
: Apply the preconditioner i solver iteration via:y 1= P 'z blocks

Matrix-vector muliply per block gemv

Preconditioner
application

* Energy balance for one preconditioner application (DP)*:

> mZ - (200 + 4800)

blocks \—r—’ \—r_’

computation data read

*John Shalf (LBNL)
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Mixed Precision Block-Jacobi Preconditioning

ﬂvlixed Precision ldea: \ .
* Do all calculations in working precision
* Preconditioner is only an approximation!
« Store the block-Jacobi matrix in reduced precision
* Benefit from faster data access

* Benefitfrom reduced data read cost

Implications:
* Reduced preconditioner quality
* Need for a flexible variant (FCQ)

* Need for more Krylov solver iterations .
k * Potential loss of regularity (breakdown)/

Cost of Inversion:
2m;3 FLOPS for block of size m;.

Z 2ms;

blocks

Cost of Preconditioner application: 5
m;?FLOPS for block of size m; : E 2m;

blocks

2
> m;

blocks

Total memory consumption:

Energy balance for one preconditioner application (DP)*:

> mZ - (200 + 4800)

blocks ‘ T | T /

computation data read

*John Shalf (LBNL)
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Mixed Precision Block-Jacobi Preconditioning

63 matrices from the SuiteSparse Matrix Collection

* Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks)
* Report conditioning of all arising diagonal blocks

* Analyze the impact on a top-level flexible Conjugate Gradient solver (CQ)
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Mixed Precision Block-Jacobi Preconditioning
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Mixed Precision Block-Jacobi Preconditioning
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Adaptive Precision Block-Jacobi Preconditioning

/ Adaptive Precision ldea: > 10° \

_—> Store block in double precision

* All computations use double precision!

» Store distinct blocks in different formats Estimate conditioning : o o
* Use single precision as standard storage format of diagonal block Store block in single precision
* Where necessary: switch to double

* For well-conditioned blocks use half precision . -
« Care about under/overflow —> Store block in half precision

k <10t /

Block-Jacobi CG
* Ax=bwith x:=0 and b:=A*1

* Relative residual stopping crit. 1e-9
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Mixed Precision Block-Jacobi Preconditioning

LI s [
Double precision

[1Single precision

0.8 || M Half precision

c

.0

306

B

©

<04

o

o

0.2

0
o
£
c \J
2 1010k L %
: ;.
° F v
© +
(@) + + + +
S - - + + + B

& 10 - i T % + N\
© L =+ + ¥ + + + - \\\
ke T T i .7+ 1 ¥ —_ o+ N
m - + N + + iR +__ + + [+

100|||||||||||T|||||||||||||||||_!_T|||T|++|-'-|||||||||||||T|T$#|||||

10 20 30 40 50 60

Test matrix [ID

$ICL [y TENNESSEE



SN AN Y

Mixed Precision Block-Jacobi Preconditioning
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Adaptive Precision Block-Jacobi Preconditioning

/ Adaptive Precision Idea:

* All computations use double precision!

> 106 \

_—> Store block in double precision

* Store distinct blocks in different formats
* Use single precision as standard storage format

Estimate conditioning . .
of diagonal block -@0 Store block in single precision

* Where necessary: switch to double
* For well-conditioned blocks use half precision
* Care about under/overflow

> Store block in half precision

<10t /

Operation approximate energy cost

DP floating point multiply-add 100 pJ Energy model:
DPD read-to-register 4800 pJ « 4800 pJ for double precision (64 bit)
DP word transmit-to-neighbor 7500 pJ _ o _ _
DP word transmit-across-system 9000 pJ « 2400 pJfor single precision / integers (32 bit)
1200 pJfor half precision (16 bit)
“John Shalf (LBNL) //7
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Adaptive Precision Block-Jacobi Preconditioning

/ Adaptive Precision Idea: > 106 \

_—> Store block in double precision

* All computations use double precision!

» Store distinct blocks in different formats Estimate conditioning : S block In singl o
* Use single precision as standard storage format of diagonal block tore block in single precision

* Where necessary: switch to double

* For well-conditioned blocks use half precision ~—~ s : .
« Care about under/overflow Store block in half precision

\ <10t /1

How much data we need to read/write in a Conjugate Gradient (CG) loop:

CSR-SpMV nz double + nzint+ nint+ 2n double (nz+2n) * 4800 pJ + (nz + n) * 2400 pJ
axpy 3n double 5 9n * 4800 pJ
Dot/ nrm 2n double / n double 4+ 1 9n * 4800 pJ
preconditioner Z mf [ used format ] 1 Z m? *?
blocks blocks

SICL i
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> Adaptive Precision Block-Jacobi Preconditioning

/ Adaptive Precision ldea: > 106 \

_—> Store block in double precision

* All computations use double precision!

» Store distinct blocks in different formats Estimate conditioning : o o
* Use single precision as standard storage format of diagonal block Store block In single precision

* Where necessary: switch to double

* For well-conditioned blocks use half precision . -
« Care about under/overflow —> Store block in half precision

k <10t /

Energy model for block-Jacobi-CG Block-Jacobi CG
* Ax=bwith x:=0 and b:=A*1

* We ignore computational cost, only memory access

« No data (matrix / vector) is cached, only DRAM reads * Relative residual stoppingcrit. 1e-9
* FCG outer solver (in DP)

* Adaptive precision for the block-Jacobi preconditioner

$ICL [ TENNESSEE
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Interested in working on numerical linear algebra...?

Research Position in Numerical Linear Algebra

Full Time - The Innovative Computing Lab (ICL, http://icl.cs.utk.edu/) of the University
of Tennessee is looking for a bright, motivated person(s) to join as a staff researcher.

The primary duties of this position are: to assist in the design, development and
maintenance of numerical software libraries for solving linear algebra problems on large
distributed memory machines with multicore processors and hardware accelerators;

write research papers documenting research findings: present material at conferences;
direct students and research team in their research endeavors as related to ongoing and
future projects. There will be opportunities for publication, travel, and high profile
professional networking in academia, labs, and industry.

Education
PhD in Computer Science or related field with demonstrable background in applied

mathematics and computer science, in particular distributed computing, multicore
computing, GPU computing; or MS in Computer Science or related field + 3-5 years

relevant research or work experience. \ .
S— ICLL Ur rafferty@icl.utk.edu
\ S

Background in applied mathematics, technical experience in parallel computing,

distributed computing, multithreading; familiarity with numerical software libraries;
experience with performance diagnostics and optimization techniques, tracing, profiling.

Experience with developing mathematical software desired. Track record of
contributing to open source projects a plus. Experience with GPU computing highly . .
desired. hartwig.anzt@Kkit.edu

Karlsruhe Institute of Technology

Job Skills

Required: background in applied mathematics, familiarity with numerical software;
extensive knowledge of programming techniques, highly proficient in C/C++, basic
understanding of Fortran language; proficiency with MPI and OpenMP, familiarity with
CUDA or OpenCL; technical writing and presentation skills, excellent communication
skills and a strong publication record.

Salary starting at S60,000/year, depending on experience and qualifications. For
consideration, send CV and contact information for three references to Tracy Rafferty at

rafferty@icl.utk edu. http://www.icl.utk.edu/~hanzt/talks/paco2017_anzt.pdf
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