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Motivation: We have to focus on data movement and memory!

*John Shalf (LBNL)
VECPAR	2010
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Which	are	the	communication-intensive	algorithms?

• Sorting

• Graph	Algorithms

• Sparse	Linear	Algebra
• Sparse	Direct	Solvers	(1D	problems,	2D	problems)*
• Sparse	Iterative	Solvers	(2D	problems	on	manycore,	3D	problems)*

• Multigrid ,	Fast	Multipole	Method	(FMM),	KrylovMethods	…
• Preconditioning:	Incomplete	LU,	(block-)	Jacobi,	Gauss-Seidel...

*Mike Heroux (SNL)

Motivation: We have to focus on data movement and memory!
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• Jacobi	method	based	on diagonal	scaling:

• Can	be	used	as	iterative	solver:		

• Can	be	used	as	preconditioner:	 																													,																		
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Block-Jacobi Preconditioning
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• Jacobi	method	based	on diagonal	scaling:

• Can	be	used	as	iterative	solver:		

• Can	be	used	as	preconditioner:	 																													,																		

• Block-Jacobi is	based	on	block-diagonal	scaling:

• Large	set	of	small	diagonal	blocks.

• Each	block	corresponds	to	one	(small)	linear	system.

• Larger blocks	typically	improve	convergence.

• Larger blocks	make	block-Jacobi	more	expensive.

Extreme	case:	one	block	of	matrix	size.
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Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

Inversion-based Block-Jacobi Preconditioning

Generate preconditioner before iterative solver starts.

Inversion of diagonal blocks
2m3 FLOPS for block of size mse
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Inversion-based Block-Jacobi Preconditioning

Generate preconditioner before iterative solver starts.

Apply the preconditioner in every solver iteration via:

Inversion of diagonal blocks
2m3 FLOPS for block of size m
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• Cost of Inversion:
2mi

3 FLOPS for block of size mi.

Inversion-based Block-Jacobi Preconditioning
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• Cost of Inversion:
2mi

3 FLOPS for block of size mi.

• Cost of Preconditioner application:
mi

2 FLOPS for block of size mi :

• Total memory consumption:

Inversion-based Block-Jacobi Preconditioning
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Generate preconditioner before iterative solver starts.

Apply the preconditioner in every solver iteration via:
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• Cost of Inversion:
2mi

3 FLOPS for block of size mi.

• Cost of Preconditioner application:
mi

2 FLOPS for block of size mi :

• Total memory consumption:

• Energy balance for one preconditioner application (DP)*:

Inversion-based Block-Jacobi Preconditioning

X
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i

computation data read

*John Shalf (LBNL)
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• Cost of Inversion:
2mi

3 FLOPS for block of size mi.

• Cost of Preconditioner application:
mi

2 FLOPS for block of size mi :

• Total memory consumption:

• Energy balance for one preconditioner application (DP)*:

Mixed Precision Block-Jacobi Preconditioning
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i

computation data read

*John Shalf (LBNL)

Mixed Precision Idea:

• Do all calculations in working precision
• Preconditioner is only an approximation!
• Store the block-Jacobi matrix in reduced precision

• Benefit from faster data access
• Benefit from reduced data read cost

Implications:
• Reduced preconditioner quality

• Need for a flexible variant (FCG)
• Need for more Krylov solver iterations
• Potential loss of regularity (breakdown)
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• 63 matrices from the SuiteSparse Matrix Collection

• Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks)

• Report conditioning of all arising diagonal blocks

• Analyze the impact on a top-level flexible Conjugate Gradient solver (CG)

Mixed Precision Block-Jacobi Preconditioning
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Mixed Precision Block-Jacobi Preconditioning

Overhead compared to double precision algorithm.

Smaller is better!
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Adaptive Precision Block-Jacobi Preconditioning

Adaptive Precision Idea:

• All computations use double precision!

• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision
• Care about under/overflow

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Block-Jacobi CG

• Ax=b with  x:=0  and  b:=A*1

• Relative residual stopping crit. 1e-9
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Mixed Precision Block-Jacobi Preconditioning
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Mixed Precision Block-Jacobi Preconditioning

Overhead compared to double precision algorithm.

Smaller is better!
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Adaptive Precision Block-Jacobi Preconditioning

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

*John Shalf (LBNL)

• 4800 pJ for double precision  (64 bit)

• 2400 pJ for single precision / integers  (32 bit)

• 1200 pJ for half precision   (16 bit)

Energy model:

Adaptive Precision Idea:

• All computations use double precision!

• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision
• Care about under/overflow
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Adaptive Precision Block-Jacobi Preconditioning

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Operation Memory volume # per FCG loop Energy est.

CSR-SpMV nz double  + nz int + n int + 2n double 1 (nz + 2n) * 4800 pJ + (nz + n) * 2400 pJ

axpy 3n double 5 9n * 4800 pJ

Dot / nrm 2n double / n double 4 + 1 9n * 4800 pJ

preconditioner [ used format ] 1 * ?
X

blocks

m2
i

How much data we need to read/write in a Conjugate Gradient (CG) loop:

X

blocks
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i

Adaptive Precision Idea:

• All computations use double precision!

• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision
• Care about under/overflow
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Adaptive Precision Block-Jacobi Preconditioning

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Energy model for block-Jacobi-CG

• We ignore computational cost, only memory access
• No data (matrix / vector) is cached, only DRAM reads
• FCG outer solver (in DP)
• Adaptive precision for the block-Jacobi preconditioner

Block-Jacobi CG

• Ax=b with  x:=0  and  b:=A*1

• Relative residual stopping crit. 1e-9

Adaptive Precision Idea:

• All computations use double precision!

• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision
• Care about under/overflow
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Overhead compared to double precision algorithm.

Smaller is better!
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Interested in working on numerical linear algebra…?

rafferty@icl.utk.edu

hartwig.anzt@kit.edu

http://www.icl.utk.edu/~hanzt/talks/paco2017_anzt.pdf


