Voltage Overscaling Algorithms for Energy-Efficient Workflow Computations With Timing Errors

Aurélien Cavelan¹, Yves Robert^{1,2}, Hongyang Sun¹ and Frédéric Vivien¹

1. ENS Lyon & INRIA, France 2. University of Tennessee Knoxville, USA

Yves.Robert@inria.fr

ICL Lunch - March 27, 2015

Introduction

- Algorithmic Approach
- Simulations
- 4 Conclusion

- Introduction

Dynamic Power Consumption

One can use Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption.

Simulations

$$Power = \alpha f V^2$$

- \bullet α effective capacitance
- f frequency
- V operating voltage

⇒Voltage has a quadratic impact on dynamic power.

The Easy Way

Target: energy consumption, not execution time.

For any frequency value, there is a threshold voltage:

Find optimal frequency for application (given performance) constraints)

Simulations

Decrease voltage to threshold voltage

The Easy Way

Target: energy consumption, not execution time.

For any frequency value, there is a threshold voltage:

- Find optimal frequency for application (given performance constraints)
- ② Decrease voltage to threshold voltage

Can we do better?

Threshold Voltage

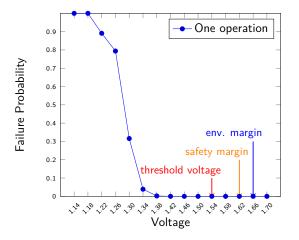


Figure: Set of voltages of a FPGA multiplier block and the associated error probabilities measured on random inputs at 90MHz and 27°C

000000

Definition

The results of some logic gates could be used before their output signals reach their final values.

- Occurs when $V_{\rm DD} < V_{\rm TH}$
- Deterministic but unpredictable
- Induces Silent Data Corruptions (SDC)

Timing Errors

Definition

The results of some logic gates could be used before their output signals reach their final values.

- ullet Occurs when $V_{
 m DD} < V_{
 m TH}$
- Deterministic but unpredictable
- Induces Silent Data Corruptions (SDC)

Unlike lightning, timing errors always strike twice

Timing Errors

Definition

The results of some logic gates could be used before their output signals reach their final values.

- ullet Occurs when $V_{
 m DD} < V_{
 m TH}$
- Deterministic but unpredictable
- Induces Silent Data Corruptions (SDC)

Unlike lightning, timing errors always strike twice

Silent errors are detected only when corrupt data is activated

Two Approaches

Near-Threshold Computing ($V_{\sf dd} pprox V_{\sf th}$)

- Used in NTC circuits (hardware)
- Almost *safe* ©
- Great energy savings ©

Voltage Overscaling ($V_{\sf dd} < V_{\sf th}$)

- Even more energy savings ©
- Purely software-based approach ©
- Generates timing errors ©
- Requires verification mechanism ©
- Requires knowledge of failure probabilities 🙁

Question

Introduction 000000

Is it possible to obtain the (correct) result of a computation for a lower energy budget than that of the best DVFS / NTC solution?

- 2 Algorithmic Approach

Consider a task and a set of voltages V:

Voltages	V_1	V_2	 $V_m = V_{\mathrm{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_m=0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 C _m

Model Assumptions

Consider a task and a set of voltages V:

Voltages	V_1	V_2	 $V_m = V_{\mathrm{TH}}$
$\mathbb{P}(\mathit{V}_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_{m} = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 C _m

Remember: timing errors always strike twice.

Consider a task and a set of voltages \mathcal{V} :

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_{m} = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 C _m

Simulations

Remember: timing errors always strike twice.

- When an error strikes, a higher voltage *must* be used
- Switching from voltage V_{ℓ} to V_{h} incurs a cost $o_{\ell,h}$
- Execution at $V_{\rm TH}$ always succeeds

Model Assumptions

Consider a task and a set of voltages \mathcal{V} :

Voltages	V_1	V_2	 $V_m = V_{\mathrm{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_{m} = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 C _m

Simulations

Remember: timing errors always strike twice.

- When an error strikes, a higher voltage *must* be used
- Switching from voltage V_{ℓ} to V_h incurs a cost $o_{\ell,h}$
- Execution at V_{TH} always succeeds

How to compute failure probabilities?

Model Assumptions

Consider a task and a set of voltages \mathcal{V} :

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(\mathit{V}_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_{m} = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 C _m

Simulations

Remember: timing errors always strike twice.

- When an error strikes, a higher voltage *must* be used
- Switching from voltage V_{ℓ} to V_h incurs a cost $o_{\ell,h}$
- Execution at $V_{\rm TH}$ always succeeds

How to compute failure probabilities?

And optimal sequence of voltages?

• Given an operation and an input I, there exists a *threshold* voltage $V_{\text{TH}}(I)$:

Simulations

- $V < V_{\rm TH}(I)$ will always lead to an incorrect result
- $V \geq V_{\text{th}}(I)$ will always lead to a successful execution

Property of Timing Errors

- Given an operation and an input I, there exists a *threshold* voltage $V_{\text{TH}}(I)$:
 - $V < V_{\text{TH}}(I)$ will always lead to an incorrect result
 - $V \geq V_{\text{\tiny TH}}(I)$ will always lead to a successful execution
- ② Given an operation and a voltage $V \in \mathcal{V}$:
 - \bullet $\, {\cal I}$ denotes the set of all possible inputs
 - $\mathcal{I}_f(V) \subseteq \mathcal{I}$ is the set of inputs that will fail at voltage V
 - Failure probability is computed as $p_V = |\mathcal{I}_f(V)|/|\mathcal{I}|$
 - ullet For any two voltages $V_1 \geq V_2$, we have $\mathcal{I}_f(V_1) \subseteq \mathcal{I}_f(V_2)$

Property of Timing Errors

- Given an operation and an input I, there exists a threshold voltage V_{TH}(I):
 - $V < V_{\text{TH}}(I)$ will always lead to an incorrect result
 - $V \geq V_{\text{\tiny TH}}(I)$ will always lead to a successful execution
- ② Given an operation and a voltage $V \in \mathcal{V}$:
 - \bullet $\, {\cal I}$ denotes the set of all possible inputs
 - $\mathcal{I}_f(V) \subseteq \mathcal{I}$ is the set of inputs that will fail at voltage V
 - Failure probability is computed as $p_V = |\mathcal{I}_f(V)|/|\mathcal{I}|$
 - ullet For any two voltages $V_1 \geq V_2$, we have $\mathcal{I}_f(V_1) \subseteq \mathcal{I}_f(V_2)$

$$\mathbb{P}(V_{\ell}\text{-fail}\mid V_0V_1\cdots V_{\ell-1}\text{-fail}) = \frac{\mid \mathcal{I}_f(V_{\ell})\mid/\mid \mathcal{I}\mid}{\mid \mathcal{I}_f(V_{\ell-1})\mid/\mid \mathcal{I}\mid} = \frac{p_{\ell}}{p_{\ell-1}}$$

Consider a sequence L of k voltages $V_1 < V_2 < \cdots < V_k = V_{\text{\tiny TH}}$,

Simulations

Execution starts at voltage V_1 :

- 1 In case of success, return result ©
- In case of failure, go to next (higher) voltage

Energy Consumption of a Single Task

Consider a sequence L of k voltages $V_1 < V_2 < \cdots < V_k = V_{ ext{\tiny TH}}$,

Simulations

Execution starts at voltage V_1 :

- In case of success, return result ©
- In case of failure, go to next (higher) voltage

$$E(L) = c_1 + p_1 \left(o_{1,2} + c_2 + \frac{p_2}{p_1} \left(o_{2,3} + c_3 + \dots \frac{p_{k-1}}{p_{k-2}} (o_{k-1,k} + c_k) \right) \right)$$

= $c_1 + p_1 (o_{1,2} + c_2) + p_2 (o_{2,3} + c_3) + \dots + p_{k-1} (o_{k-1,k} + c_k)$

Energy Consumption of a Single Task

Consider a sequence L of k voltages $V_1 < V_2 < \cdots < V_k = V_{\text{TH}}$,

Execution starts at voltage V_1 :

- In case of success, return result <a>©
- In case of failure, go to next (higher) voltage

$$E(L) = c_1 + p_1 \left(o_{1,2} + c_2 + \frac{p_2}{p_1} \left(o_{2,3} + c_3 + \dots \frac{p_{k-1}}{p_{k-2}} (o_{k-1,k} + c_k) \right) \right)$$

= $c_1 + p_1 (o_{1,2} + c_2) + p_2 (o_{2,3} + c_3) + \dots + p_{k-1} (o_{k-1,k} + c_k)$

We generalize:

$$E(L) = c_1 + \sum_{\ell=2}^{k} p_{\ell-1} \left(o_{\ell-1,\ell} + c_{\ell} \right) \tag{1}$$

Simulations

Optimal Sequence of Voltages

Theorem

To minimize the expected energy consumption for a single task, the optimal sequence of voltages to execute the task with a preset voltage $V_p \in \mathcal{V}$ of the system can be obtained by dynamic programming with complexity $O(k^2)$.

Simulations

Optimal Sequence of Voltages

Theorem

To minimize the expected energy consumption for a single task, the optimal sequence of voltages to execute the task with a preset voltage $V_p \in \mathcal{V}$ of the system can be obtained by dynamic programming with complexity $O(k^2)$.

$$E(L_s^*) = c_s + \min_{s < \ell < k} \{ E(L_\ell^*) - c_\ell + p_s(o_{s,\ell} + c_\ell) \}$$
 (2)

Simulations

and the optimal sequence starting with V_s is $L_s^* = \langle V_s, L_{\ell}^* \rangle$ where

$$\ell' = \operatorname*{arg\,min}_{s<\ell< k} \left\{ E(L_\ell^*) + p_s o_{s,\ell} + (p_s-1)c_\ell \right\}.$$

The dynamic program is initialized with $E(L_k^*) = c_k$ and $L_k^* = \langle V_k \rangle$

Chain of Tasks

• Without switching cost: optimal sequence for one task can be used to execute each task.

 Without switching cost: optimal sequence for one task can be used to execute each task.

Simulations

- With switching cost:
 - ullet After execution of a task, platform is left at voltage $V_{
 m e}$
 - ullet Optimal sequence starts at voltage V_s
 - Additional switching cost $o_{e,s}$ must be paid
 - Algorithm for one task is no longer optimal

- Without switching cost: optimal sequence for one task can be used to execute each task.
- With switching cost:
 - After execution of a task, platform is left at voltage V_e
 - Optimal sequence starts at voltage V_s
 - Additional switching cost o_{e.s} must be paid
 - Algorithm for one task is no longer optimal

Theorem

To minimize the expected energy consumption for a linear chain of tasks, the optimal sequence of voltages to execute each task, given the terminating voltage of its preceding task (or given the preset voltage V_p of the system for the first task), can be obtained by dynamic programming with complexity $O(nk^2)$.

Simulations

- Simulations

Blocked Matrix-Matrix Multiplication

Consider the blocked matrix multiplication $C = A \times B$.

Application Workflow

$$\begin{array}{l} \text{for } i=1 \text{ to } \lceil \frac{m}{b} \rceil \text{ do} \\ \text{for } j=1 \text{ to } \lceil \frac{m}{b} \rceil \text{ do} \\ \text{for } k=1 \text{ to } \lceil \frac{m}{b} \rceil \text{ do} \\ C_{i,j} \leftarrow C_{i,j} + A_{i,k} \times B_{k,j} \end{array}$$

- m matrix size
- b block size

Simulations

Blocked Matrix-Matrix Multiplication

Consider the blocked matrix multiplication $C = A \times B$.

Application Workflow

$$\begin{aligned} & \textbf{for } i = 1 \text{ to } \left\lceil \frac{m}{b} \right\rceil \, \textbf{do} \\ & \textbf{for } j = 1 \text{ to } \left\lceil \frac{m}{b} \right\rceil \, \textbf{do} \\ & \textbf{for } k = 1 \text{ to } \left\lceil \frac{m}{b} \right\rceil \, \textbf{do} \\ & C_{i,j} \leftarrow C_{i,j} + A_{i,k} \times B_{k,j} \end{aligned}$$

- m matrix size
- b block size

ABFT can be used to add per-block verification.

Let
$$e^T = [1, 1, \dots, 1]$$
, we define

$$A^c := \begin{pmatrix} A \\ e^T A \end{pmatrix}, B^r := \begin{pmatrix} B & Be \end{pmatrix}, C^f := \begin{pmatrix} C & Ce \\ e^T C & e^T Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

Simulations

Simulations

Let $e^T = [1, 1, \dots, 1]$, we define

$$A^c := \begin{pmatrix} A \\ e^T A \end{pmatrix}, B^r := \begin{pmatrix} B & Be \end{pmatrix}, C^f := \begin{pmatrix} C & Ce \\ e^T C & e^T Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

$$A^{c} \times B^{r} = \begin{pmatrix} A \\ e^{T} A \end{pmatrix} \times \begin{pmatrix} B & Be \end{pmatrix}$$
$$= \begin{pmatrix} AB & ABe \\ e^{T} AB & e^{T} ABe \end{pmatrix} = \begin{pmatrix} C & Ce \\ e^{T} C & e^{T} Ce \end{pmatrix} = C^{f}$$

Consider the matrix multiplication as a chain of $n = \lceil \frac{m}{h} \rceil^3$ tasks.

Simulations

000000000

Time to Execute one Task

- $t = \tau \cdot w/\eta$
 - $\tau = 1/f$ time to do one cycle
 - $\eta = 0.8$ peak performance
- $w = b(b+1)^2 + \sigma$
 - $\sigma = 8^3$ initialization overhead
 - (b+1) ABFT overhead

From [Razor] for a FPGA at f = 90MHz and 27°C:

- Set of voltages
- Timing errors probabilities

Failure Probabilities

Consider a set of voltages $\mathcal{V}.$ For any voltage $V_\ell \in \mathcal{V}$

- $p_{\ell} = 1 (1 p_{\ell}^{(1)}/\gamma)^{w}$
 - $p_{\ell}^{(1)}$ probability of timing error for one random operation
 - γ correction factor (circuit-level)

Platform Settings (2/2)

From [Razor] for a FPGA at f = 90MHz and $27^{\circ}C$:

- Set of voltages
- Timing errors probabilities

Dynamic Power Consumption

- $P(V, f) = \alpha f V^2$
- ullet We assume (wlog) lpha f=1

Platform Settings (2/2)

From [Razor] for a FPGA at f = 90MHz and 27°C:

- Set of voltages
- Timing errors probabilities

Dynamic Power Consumption

- $P(V, f) = \alpha f V^2$
- We assume (wlog) $\alpha f = 1$

Voltage Switching Cost

- $\bullet o_{\ell,h} = \begin{cases} 0, & \text{if } \ell = h \\ \beta \cdot \frac{|V_\ell V_h|}{|V_k V_1|} & \text{otherwise} \end{cases}$ $\bullet \beta = o_{1,k}$

 N-Voltage: Baseline algorithm that applies NTC and always uses threshold voltage.

Simulations

000000000

- DP₁-detect & DP₁-correct: Optimal dynamic programming algorithms for a single task.
- DP_n -detect & DP_n -correct: Optimal dynamic programming algorithms for a chain of tasks.

detect algorithms use ABFT for error detection.
correct algorithms use ABFT for detection and correction.

Failure probabilities

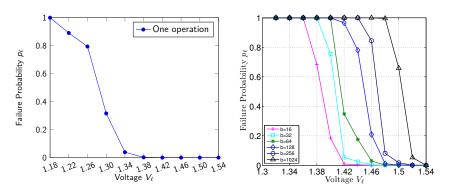


Figure: Failure probabilities for one operation and for one task under different block sizes and voltages.

Simulations (without switching cost)

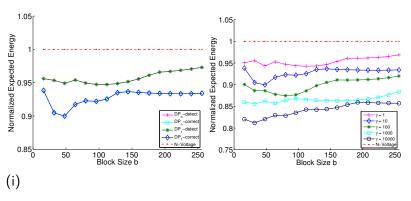


Figure: Impact of b and γ on expected energy consumption, without voltage switching costs. For (ii), only results for DP_n -correct algorithm are shown.

(ii)

Simulations (with switching cost)

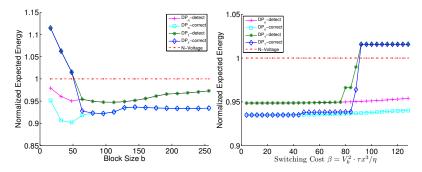


Figure: Impact of b and β on expected energy consumption. Voltage switching cost equivalent to energy consumed by one 32×32 matrix multiplication at threshold voltage without overhead.

- 4 Conclusion

Conclusion

We use dynamic voltage overscaling to reduce power consumption.

Summary

- Software based approach
- Model for timing errors
- Optimal polynomial-time solution for a chain of tasks
- Simulations for matrix multiplication using ABFT

Conclusion

We use dynamic voltage overscaling to reduce power consumption.

Summary

- Software based approach
- Model for timing errors
- Optimal polynomial-time solution for a chain of tasks
- Simulations for matrix multiplication using ABFT

Original problem and encouraging results; needs further research.

Conclusion

We use dynamic voltage overscaling to reduce power consumption.

Summary

- Software based approach
- Model for timing errors
- Optimal polynomial-time solution for a chain of tasks
- Simulations for matrix multiplication using ABFT

Original problem and encouraging results; needs further research.

Future Work

- Algorithms for other task graphs
- Additional simulations, emulations and experiments