Scheduling computational workflows on failure-prone platforms

Guillaume Aupy, Anne Benoit, Henri Casanova & Yves Robert

ICL Friday Lunch, Feb. 2015

Motivation

Model

Fault-tolerance
Application

Results
Exp'd makespan

Heuristic

evaluation

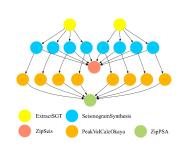
Heuristics Evaluation

Conclusion

Many HPC applications can be represented as computational workflows.

Represented by a DAG:

- Vertices are tightly coupled parallel tasks
- Edges represent data dependencies



Eg. CyberShake workflow (used to characterize earthquake hazards) as presented by Pegasus.

Workflow scheduling with failures

G. Aupy

Motivation

Platform

Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

Heuristics

Evaluation Conclusion

_

2 Models
Platform

Motivation

Fault-tolerance

Application

Results

Computation of the expected makespan NP-hardness, polynomial algorithms for special graphs

 Efficient heuristic evaluation Heuristics Evaluation

6 Conclusion

Motivation

Models

Platform

Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

ovaluation

Heuristics Evaluation

Conclusion

Failure-prone platform:

- p processors
- Exponential failure distribution, MTBF: $\mu = \frac{1}{\lambda}$

Platform and processor assignments

G. Aupy

Motivation

Models

Platform Fault-tolerance

Application

Results

Exp'd makespan Other

Heuristic

evaluation

Heuristics Evaluation

Conclusion

Failure-prone platform:

- p processors
- Exponential failure distribution, MTBF: $\mu = \frac{1}{\lambda}$

Mixed parallelism is hard. Even without failures.

- ► Assignment of processors to tasks? (throughput)
- ► Traversal of the graph? (scheduling)
- ► Data redistribution? (model redistribution cost)

Platform and processor assignments

G. Aupy

Motivation

Models

Platform Fault-tolerance

Application

Results

Exp'd makespan Other

Heuristic

evaluation

Heuristics Evaluation

Failure-prone platform:

- p processors
- \blacktriangleright Exponential failure distribution, MTBF: $\mu=\frac{1}{\lambda}$

Mixed parallelism is hard. Even without failures.

- Assignment of processors to tasks! (throughput)
- ► Traversal of the graph? (scheduling)
- Data redistribution? (model redistribution cost)

Simplified scenario

Each task uses all available processors; workflow is linearized.

Motivation

Models

Application

Fault-tolerance Exp'd makespan

Heuristic

Heuristics Evaluation

Conclusion

We use the checkpoint technique for fault-tolerance.

Checkpointing within tasks is expensive or hard:

- Expensive: for application-agnostic checkpoint, need to checkpoint the full image
- ► Hard: modifying the implementation of the tasks to checkpoint only what is necessary

Checkpoint model

We only checkpoint the output data of tasks.

Motivation

Models

Platform Fault-tolerance

Application

Exp'd makespan

Heuristic

Heuristics Evaluation

Lvaluatio

Given a DAG: $\mathcal{G} = (V, E)$. For all tasks T_i , we know:

 w_i : their execution time

 c_i : the time to checkpoint their output

 r_i : the time to recover their output

DAG-CKPTSCHED

- ▶ In which order should the tasks be executed?
- ▶ Which tasks should be checkpointed?

We want to minimize the expected execution time.

. .

_

. . .

Motivation

Models

Platform

Fault-tolerance Application

Results

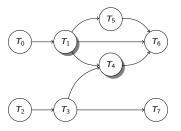
Exp'd makespan Other

Heuristic

ovaluation

Heuristics Evaluation

Canalusian



A solution (schedule):

Order: $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$

Ckpted: T_1, T_4

Fault-tolerance Application

Results

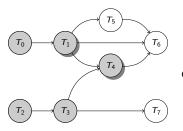
Exp'd makespan Other

Heuristic

Heuristics Evaluation

Conclusion

Motivational example



A solution (schedule):

Order: $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$

Ckpted: T_1, T_4

Time

Motivation

Models

Platform

Fault-tolerance
Application

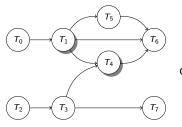
Results

Exp'd makespan Other

Heuristic

Heuristics Evaluation

Conclusion



A solution (schedule):

Order: $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$

Ckpted: T_1, T_4

Motivation

Models

Platform

Fault-tolerance Application

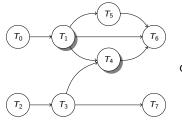
Results

Exp'd makespan Other

Heuristic

Heuristics Evaluation

Conclusion



6.0

A solution (schedule):

 $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$ Order:

Ckpted: T_1, T_4

Motivation

Models

Platform

Fault-tolerance
Application

Results

Exp'd makespan Other

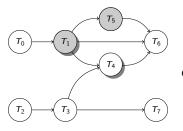
Heuristic

ovaluation

Heuristics Evaluation

Conclusion

Motivational example



A solution (schedule):

Order: $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$

Ckpted: T_1, T_4

ııme

Motivation

Models

Platform

Fault-tolerance
Application

Results

Exp'd makespan Other

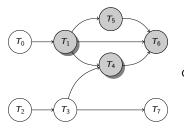
Heuristic

ovaluation

Heuristics Evaluation

Conclusion

Motivational example



A solution (schedule):

Order: $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$

Ckpted: T_1, T_4

ııme

Motivation

Models

Platform

Fault-tolerance Application

Results

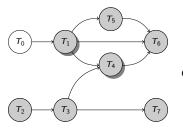
Exp'd makespan Other

Heuristic

Heuristics Evaluation

Conclusion

Motivational example



6.0

A solution (schedule):

Order: $T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7$

Ckpted: T_1, T_4

· · · O · · · · · · · ·

Motivation

Fault-tolerance

Application

Results

Exp'd makespan Other

Heuristics

Evaluation

Conclusion

Let $\mathbb{E}[t(w; c; r)]$ the expected time to execute a single application:

w sec. of computation in a fault-free execution

c sec. to checkpoint the output

r sec. to recover (if a failure occurs)

$$\mathbb{E}[t(w;c;r)] = e^{\lambda r} \left(\frac{1}{\lambda} + D\right) \left(e^{\lambda(w+c)} - 1\right)$$

Workflow scheduling with failures

G. Aupy

Motivation

Models

Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

evaluation

Heuristics

Evaluation

Conclusion

Theorem

Given a DAG, and a schedule for this DAG, it is possible to compute the expected execution time in polynomial time.

Workflow scheduling with failures

G. Aupy

Motivation

Models

Platform
Fault-tolerance
Application

Results

Exp'd makespan

Heuristic

evaluation

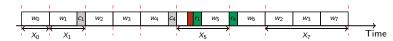
Heuristics Evaluation

Conclusion

Theorem

Given a DAG, and a schedule for this DAG, it is possible to compute the expected execution time in polynomial time.

 X_i : execution time between the end of the first successful execution of T_{i-1} and the end of the first successful execution of T_i (RV).



Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan

Heuristic

Heuristics

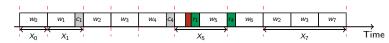
Evaluation

Conclusion

Theorem

Given a DAG, and a schedule for this DAG, it is possible to compute the expected execution time in polynomial time.

 X_i : execution time between the end of the first successful execution of T_{i-1} and the end of the first successful execution of T_i (RV).



We want to compute $\mathbb{E}[\sum_i X_i] = \sum_i \mathbb{E}[X_i]$.

Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

ovaluation

Heuristics Evaluation

Conclusion

 Z_k^i : "There was a fault during X_k and no fault during X_{k+1} to X_{i-1} " (= when starting X_i , the last fault was during X_k).

$$ightarrow \mathbb{E}[X_i] = \sum_{k=0}^{i-1} \mathbb{P}(Z_k^i) \mathbb{E}[X_i|Z_k^i]$$

Fault-tolerance Application

Results

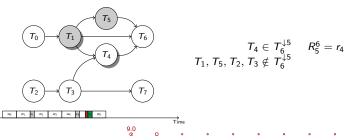
Exp'd makespan

Heuristics Evaluation

 Z_{k}^{i} : "There was a fault during X_{k} and no fault during X_{k+1} to X_{i-1} " (= when starting X_i , the last fault was during X_k).

$$ightarrow \mathbb{E}[X_i] = \sum_{k=0}^{i-1} \mathbb{P}(Z_k^i) \mathbb{E}[X_i|Z_k^i]$$

 $T_i^{\downarrow k}$: all T_i 's whose output should be computed during X_i if Z_k^i . We separate their impact on the execution time into W_{k}^{i} and R_{k}^{i} (depending upon whether T_i was checkpointed).



Motivatio

Models

Fault-tolerance
Application

Results

Exp'd makespan

Heuristic

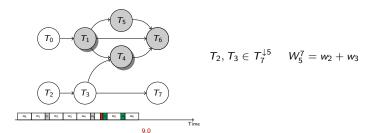
Heuristics Evaluation

. . .

 Z_k^i : "There was a fault during X_k and no fault during X_{k+1} to X_{i-1} " (= when starting X_i , the last fault was during X_k).

$$ightarrow \mathbb{E}[X_i] = \sum_{k=0}^{i-1} \mathbb{P}(Z_k^i) \mathbb{E}[X_i|Z_k^i]$$

 $T_i^{\downarrow k}$: all T_j 's whose output should be computed during X_i if Z_k^i . We separate their impact on the execution time into W_k^i and R_k^i (depending upon whether T_i was checkpointed).



Motivation

Models Platform

Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

Heuristics Evaluation

Conclusion

▶ Let i, k s.t. 0 < k < i - 1:

$$\mathbb{P}(Z_{i-1}^i) = 1 - \sum_{i=1}^{i-2} \mathbb{P}(Z_k^i)$$

$$\mathbb{P}(Z_k^i) = e^{-\lambda \sum_{j=k+1}^{i-1} (W_k^j + R_k^j + w_j + \delta_j c_j)} \cdot \mathbb{P}(Z_k^{k+1})$$

Motivation

Models

Fault-tolerance Application

Results

Exp'd makespan

Heuristic

Heuristics

Conclusion

Evaluation

▶ Let i, k s.t. 0 < k < i - 1:

$$\begin{split} \mathbb{P}(Z_{i-1}^{i}) &= 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_{k}^{i}) \\ \mathbb{P}(Z_{k}^{i}) &= e^{-\lambda \sum_{j=k+1}^{i-1} \left(W_{k}^{j} + R_{k}^{j} + w_{j} + \delta_{j} c_{j}\right)} \cdot \mathbb{P}(Z_{k}^{k+1}) \end{split}$$

Probability of successful execution of X_{k+1} to X_{i-1} given that there is a fault in X_k .

$$X_j = W_k^j + R_k^j + w_j + \delta_j c_j$$
 when Z_k^i

Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan

Heuristic

avaluation

Heuristics Evaluation

Conclusion

▶ Let i, k s.t. $0 \le k \le i - 1$:

$$\mathbb{P}(Z_{i-1}^i) = 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_k^i)$$

$$\mathbb{P}(Z_k^i) = e^{-\lambda \sum_{j=k+1}^{i-1} \left(W_k^j + R_k^j + w_j + \delta_j c_j\right)} \cdot \mathbb{P}(Z_k^{k+1})$$

Probability that there is a fault in X_k .

Motivation

Models Platform

Platform Fault-tolerance Application

Results

Exp'd makespan

Heuristic

----l

Heuristics Evaluation

Conclusion

▶ Let i, k s.t. 0 < k < i - 1:

$$\begin{split} \mathbb{P}(Z_{i-1}^{i}) &= 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_{k}^{i}) \\ \mathbb{P}(Z_{k}^{i}) &= e^{-\lambda \sum_{j=k+1}^{i-1} \left(W_{k}^{j} + R_{k}^{j} + w_{j} + \delta_{j} c_{j}\right)} \cdot \mathbb{P}(Z_{k}^{k+1}) \end{split}$$

$$\mathbb{E}[X_i|Z_k^i] = \\ \mathbb{E}[t\left(W_k^i + R_k^i + w_i ; \delta_i c_i ; W_i^i + R_i^i - \left(W_k^i + R_k^i\right)\right)]$$

Motivation

Models Platform

Platform
Fault-tolerance
Application

Results

Exp'd makespan Other

Heuristic

ovaluation

Heuristics Evaluation

Conclusion

Sketch of Proof (2/2) $\mathbb{E}[X_i] = \sum_{k=0}^{i-1} \mathbb{P}(Z_k^i) \mathbb{E}[X_i|Z_k^i]$

▶ Let i, k s.t. $0 \le k < i - 1$:

$$\mathbb{P}(Z_{i-1}^i) = 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_k^i)$$

$$\mathbb{P}(Z_k^i) = e^{-\lambda \sum_{j=k+1}^{i-1} (W_k^j + R_k^j + w_j + \delta_j c_j)} \cdot \mathbb{P}(Z_k^{k+1})$$

$$\mathbb{E}[X_i|Z_k^i] = \\ \mathbb{E}[t\left(W_k^i + R_k^i + w_i; \delta_i c_i; W_i^i + R_i^i - (W_k^i + R_k^i)\right)]$$

By definition of W_k^i and R_k^i , this is the work to be done after Z_k^i .

iviotivatio

Models
Platform

Fault-tolerance Application

Results

Exp'd makespan

Heuristic

ovaluation

Heuristics Evaluation

Conclusion

▶ Let i, k s.t. $0 \le k < i - 1$:

$$\mathbb{P}(Z_{i-1}^i) = 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_k^i)$$

$$\mathbb{P}(Z_k^i) = e^{-\lambda \sum_{j=k+1}^{i-1} \left(W_k^j + R_k^j + w_j + \delta_j c_j\right)} \cdot \mathbb{P}(Z_k^{k+1})$$

$$\mathbb{E}[X_i|Z_k^i] = \\ \mathbb{E}[t\left(W_k^i + R_k^i + w_i; \delta_i c_i; W_i^i + R_i^i - (W_k^i + R_k^i)\right)]$$

 $\delta_i = 0$ if T_i is not checkpointed, 1 otherwise

Motivation

Models

Fault-tolerance
Application

Results

Exp'd makespan

Heuristic

evaluation

Heuristics Evaluation

Conclusion

▶ Let i, k s.t. $0 \le k < i - 1$:

$$\begin{split} \mathbb{P}(Z_{i-1}^{i}) &= 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_{k}^{i}) \\ \mathbb{P}(Z_{k}^{i}) &= e^{-\lambda \sum_{j=k+1}^{i-1} \left(W_{k}^{j} + R_{k}^{j} + w_{j} + \delta_{j} c_{j}\right)} \cdot \mathbb{P}(Z_{k}^{k+1}) \end{split}$$

$$\mathbb{E}[X_i|Z_k^i] =$$

$$\mathbb{E}[t\left(W_k^i + R_k^i + w_i ; \delta_i c_i ; W_i^i + R_i^i - \left(W_k^i + R_k^i\right)\right)]$$

If there is a failure during X_i , then the work to be done becomes $W_i^i + R_i^i + w_i$.

Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

avaluation

Heuristics Evaluation

Conclusion

▶ Let i, k s.t. $0 \le k < i - 1$:

$$egin{aligned} \mathbb{P}(Z_{i-1}^i) &= 1 - \sum_{k=0}^{i-2} \mathbb{P}(Z_k^i) \ & \\ \mathbb{P}(Z_{\iota}^i) &= e^{-\lambda \sum_{j=k+1}^{i-1} \left(W_k^j + R_k^j + w_j + \delta_j c_j
ight)} \cdot \mathbb{P}(Z_{\iota}^{k+1}) \end{aligned}$$

- $\mathbb{E}[X_i|Z_k^i] =$ $\mathbb{E}[t\left(W_k^i + R_k^i + w_i ; \delta_i c_i ; W_i^i + R_i^i \left(W_k^i + R_k^i\right)\right)]$
- ▶ LEMMA: We can compute W_k^i and R_k^i in polynomial time. \Box

Motivation

Models

Platform Fault-tolerance

Application

Results

Exp'd makespan

Heuristic

evaluation

Heuristics Evaluation

Conclusion

Theorem (Complexity)

DAG-CKPTSCHED for fork DAGs can be solved in linear time. DAG-CKPTSCHED for join DAGs is NP-complete.

Theorem

DAG-CKPTSCHED for a join DAG where $c_i = c$ and $r_i = r$ for all i can be solved in quadratic time.

Motivation

Mode

Platform Fault-tolerance

Application

Results

Exp'd makespan

Heuristic

evaluation

Heuristics Evaluation

Conclusion

Theorem (Complexity)

DAG-CKPTSCHED for fork DAGs can be solved in linear time. DAG-CKPTSCHED for join DAGs is NP-complete.

Theorem

DAG-CKPTSCHED for a join DAG where $c_i = c$ and $r_i = r$ for all i can be solved in quadratic time.

Open Problem

Complexity of DAG-CKPTSCHED for a general DAG where $c_i = c$ and $r_i = r$ for all i?

Efficient heuristic evaluation

G. Aupy

Motivation

Model

Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic evaluation

Heuristics Evaluation

Conclusion

Designing efficient heuristics used to take:

- ► Numerous, time-consuming and expensive stochastic experiments on an actual platform
- Numerous, time-consuming simulations with a fault-generator

Now we can simply compute the expected makespan!

Fault-tolerance Application

Exp'd makespan

Heuristic evaluation

Heuristics

Evaluation

Conclusion

Linearization strategies

DF Depth First (prio tasks by decreasing outweight)

BF Breadth First (prio tasks by decreasing outweight)

RF Random First

Checkpoint strategies

CKNVR Never checkpoint (default)

CKALWS Always checkpoint

(default)

Below: extensive search for checkpoint from 1 to n-1

CKPER "Periodic" checkpoint

 C_{KW} Prioritize large w_i

CKC Prioritize small ci

Motivation

Mode

Platform
Fault-tolerance
Application

Exp'd makespan

Heuristic

evaluation Heuristics

Evaluation

Conclusion

We use the Pegasus Workflow Generator to generate realistic synthetic workflows:

Montage: mosaics of the sky. Average $w_i \approx 10$ s. Ligo: gravitational waveforms. Average $w_i \approx 220$ s. CyberShake: earthquake hazards. Average $w_i \approx 25$ s. Genome: genome sequence processing. Average $w_i > 1000$ s.

- ▶ We plot the ratio of the expected execution time (T) over the execution time of a failure-free, checkpoint-free execution (T_{inf}) .
- No downtime.
- $ightharpoonup c_i = r_i = 0.1w_i$ (similar for other values)

Motivation

Models

Platform Fault-tolerance Application

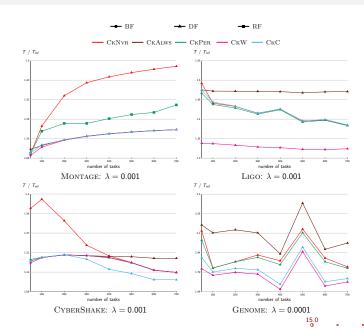
Results

Exp'd makespan Other

Heuristic

evaluation

Heuristics Evaluation



Motivation

Models

Platform Fault-tolerance Application

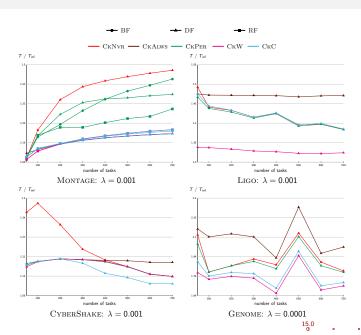
Results

Exp'd makespan Other

Heuristic evaluation

Heuristics

Evaluation



Motivation

Models Platform

Platform
Fault-tolerance
Application

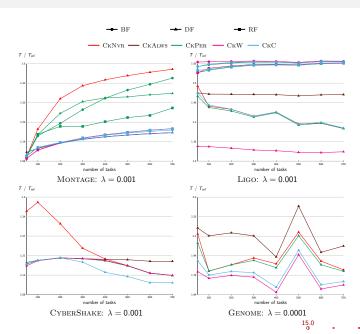
Results

Exp'd makespan Other

Heuristic evaluation

Heuristics

Evaluation



Motivation

Models

Platform Fault-tolerance Application

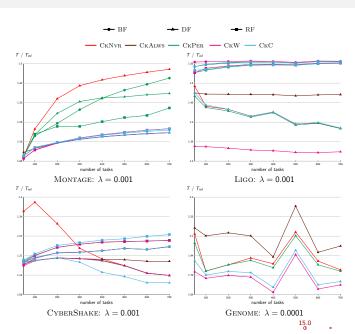
Results

Exp'd makespan Other

Heuristic evaluation

Heuristics

Evaluation



Motivation

Models

Platform Fault-tolerance Application

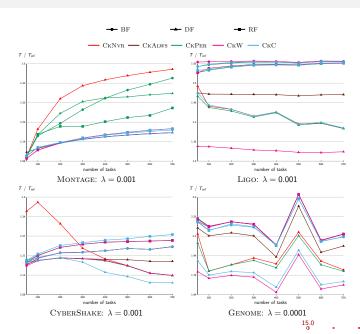
Results

Exp'd makespan Other

Heuristic evaluation

Heuristics

Evaluation



Workflow scheduling with failures

G. Aupy

Motivation

Models

Fault-tolerance
Application

Results

resuits

Exp'd makespan Other

Heuristic evaluation

evaluation Heuristics

Evaluation

Conclusion

- ▶ BF is not a good heuristic for linearization
- ► CKPER is not a good heuristic for checkpointing DAGs

- ▶ DF seems to be a good heuristic for linearization
- ► CKW, CKC seem to be good heuristics for checkpointing (especially CKW)

16.0

Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan

Heuristic

evaluation

Heuristics Evaluation

- ► Framework: Applications are scheduled on the whole platform, subject to IID exponentially distributed failures.
- ► A polynomial time algorithm to compute the expected makespan for general DAGs.
- ► Polynomial-time algorithm for fork DAGs, some join DAGs, intractability in the general case.
- ► Evaluation of several heuristics on representative workflow configurations.
 - ightarrow Periodic checkpoint is not good for general DAGs.

Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan Other

Heuristic

evaluation

Heuristics Evaluation

Conclusion

Our key result has opened the road to designing efficient heuristics.

- On a theoretical point of view:
 - (i) Non-blocking checkpoint
 - (ii) Remove linearization assumption

Motivation

Models

Platform Fault-tolerance Application

Results

Exp'd makespan

Heuristic

evaluation

Heuristics Evaluation

Conclusion

Our key result has opened the road to designing efficient heuristics.

- ▶ On a theoretical point of view:
 - (i) Non-blocking checkpoint
 - (ii) Remove linearization assumption

Thanks