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Premises

Definition (Evidence)
Accurate data, properly interpreted

Definition (Knowledge)
A useful model, i.e., simplification of reality

Definition (Evidence Engineering)
Methods to produce accurate and actionable
evidence from operational data

Definition (Data Science)
The study of the generalizable extraction of
knowledge from data



Why not Science?

Science extracts knowledge from

experiment data

Definition (Operational Data (OD))
Digital traces produced in the regular course of work
or play (i.e., data generated or managed by
operational support (OS) tools)

I no carefully designed measurement system



Science: Temperature Experiment Data

Meteorology
I Weather stations

I Known locations
everywhere

I Calibrated sensor, 5± 1 ft
above the ground,
shielded from sun, freely
ventilated by air flow . . .

I Measures collected at
defined times

I Use measures directly in
models
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Data Science: Operational Data
Mobile Phones

I Location,
accelerometer, no
temperature

I No context:
indoors/outside

I Locations/times
missing

I Incorrect values

I Data Laws, e.g,

I Temperature →
sensor?

I When outside?

I Use Data Laws

I Recover context,
correct, impute
missing

I Map sensor output
into temperature
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Example SE Tools Producing OD

I Version control systems (VCS)
I SCCS, CVS, ClearCase, SVN, Bzr, Hg, Git

I Issue tracking and customer relationship mgmt
I Bugzilla, JIRA, ClearQuest, Siebel

I Code editing
I Emacs, Eclipse, Sublime

I Communication
I Twitter, IM, Forums

I Documentation
I StackOverflow, Wikies

I Execution
I GoogleAnalytics, AB testing, performance logs



Metaphor

Example (Piloting a Drone)

I Feed sensor data to the pilot

I Wrong data/misinterpretation → crash

I Accuracy is relatively well defined



In most cases accuracy is not easy to
measure or even define

I Domains
I Search
I Entertainment
I Social life
I Software development

I How to navigate without crashing?



What are main challenges?

I Operational data are treacherous - unlike
experimental data

I Multiple contexts
I Missing events
I Incorrect, filtered, or tampered with

I Continuously changing
I Systems and practices are evolving

I Challenges measuring or defining accuracy

I Potential for misinterpretation



OD: Multi-context, Missing, and Wrong

I Example issues with commits in VCS
I Context:

I Why: merge/push/branch, fix/enhance/license
I What: e.g, code, documentation, build, binaries
I Practice: e.g., centralized vs distributed

I Missing: e.g., private VCS, no links to defect
I Incorrect: tangled, incorrect comments
I Filtered: small projects, import from CVS
I Tampered with: git rebase



Goals and Method of Evidence Engineering

Goals

I Create methods that increase the integrity of
evidence

Method
I Discover by studying existing approaches

I Ratings, workflow systems, crowd-sourcing (e.g.,
Google maps)

I Suitable techniques from other domains
I Software engineering, databases, statistics, HCI,

. . .

I Create novel approaches, e.g., Data Laws



Data Laws

I Segment, impute, and correct (see, e.g.,
˜[1, 3, 5, 4])

I Based on the way OS tools are used
I Based on the physical and economic constraints
I Are empirically validated



How are Defects Observed?

Context
Enterprise software products, highly configurable,
sophisticated users, many releases of software

Definition (Platonic Defect)
An error in coding or logic that causes a program to
malfunction or to produce incorrect/unexpected
results

Definition (Customer Found Defect (CFD))
A user found (and reported) program behavior (e.g.,
failure) that results in a code change.



Using OD to Count CFDs

I CFDs are observed/measured, not defects
I CFDs are introduced by users

I Lack of use hides defects
I A mechanism by which defects are missing

I Not CFDs
I (Small) issues users don’t care to report
I (Serious) issues that are too difficult to reproduce

or fix

I More CFDs → more use → a better product
I Smaller chances of discovering a CFD by later users



Example: CFDs per change and
% of users with CFD
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Data Laws for CFDs
(Mechanisms and Good Practices)

Laws

I Law I: Code Change Increase Odds of CFDs

I Law II: More Users will Increase Odds of CFDs

I Law III: More Use will Increase Odds of CFDs

Essential Practices

I Commandment I: Don’t Be the First User

I Commandment II: Don’t Panic After Install

I Cmdmnt III: Keep a Steady Rate of CFDs



Law II: Deploying to More Users will
Increase Odds of CFDs

Mechanism

I New use profiles

I Different
environments

Evidence
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Commandment I: Don’t Be the First User
Formulation
Early users are more likely to
encounter a CFD

Mechanism

I Later users get builds with patches

I Services team learns how to install/configure

I Workarounds for many issues are discovered

Evidence
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I Quality ↑ with time (users)
after the launch, and may be
an order of magnitude better
one year later[2]



A Game-Theoretic View
I A user i installing at time ti
I Expected loss lip(ti): decreases

I where p(t) = e−αn(t)p(0)
I p(0) - the chance of defect at

launch
I n(t) - the number of of users

who install by time t

I Value vi(T − ti): also decreases

Constraints

I Rate k at which issues are fixed by developers
(see C-t III)

Best strategy: t∗i = arg maxti vi(T − ti)− lip(ti)



Summary
I Quality of data is key determinant of software

success

I The main challenge of EE is OD
I No two events have the same context

I Observables represent a mix of platonic concepts

I Not everything is observed
I Data are often incorrect

I EE changes the goals of research
I Model practices of using operational systems
I Establish data laws

I Use other sources, experiment, . . .
I Use data laws to

I Recover the context
I Correct data
I Impute missing information



Research Potentially Relevant for ICL

I Improve middleware engineering practices
I Measure OD from ICL projects
I Create OD-based tools that improve effectiveness

of middleware engineering

I Improve middleware usability/effectiveness
I Design OD generation for runtime
I Leverage usage data to

I Improve design of middleware
I Make user experience better
I Improve performance
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Abstract

Structured and unstructured data in operational support tools have long been

prevalent in software engineering. Similar data is now becoming widely available in

other domains. Software systems that utilize such operational data (OD) to help with

software design and maintenance activities are increasingly being built despite the

difficulties of drawing valid conclusions from disparate and low-quality data and the

continuing evolution of operational support tools. This paper proposes systematizing

approaches to the engineering of OD-based systems. To prioritize and structure

research areas we consider historic developments, such as big data hype; synthesize

defining features of OD, such as confounded measures and unobserved context; and

discuss emerging new applications, such as diverse and large OD collections and

extremely short development intervals. To sustain the credibility of OD-based systems

more research will be needed to investigate effective existing approaches and to

synthesize novel, OD-specific engineering principles.
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