# CholeskyQR2: Cholesky QR factorization with reorthogonalization

November 3, 2015 @ICL, The University of Tennessee

Takeshi Fukaya (Hokkaido Univ. / JST CREST)

joint work with

Yuji Nakatsukasa (The Univ. of Tokyo)

Yuka Yanagisawa (Waseda Unv.)

Yusaku Yamamoto (UEC / JST CREST)

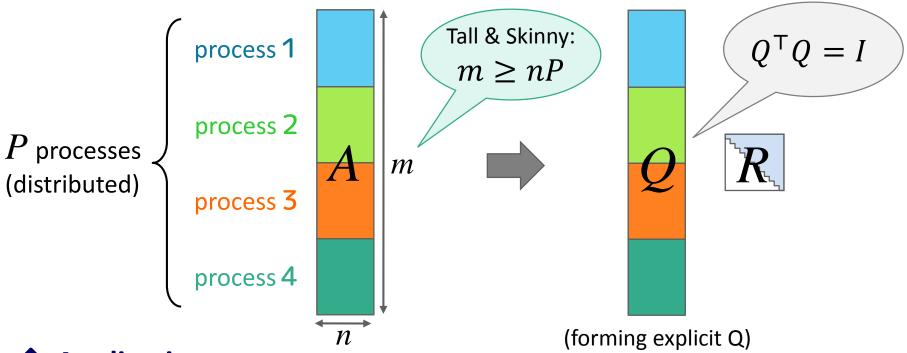
## Introduction of our study

#### **Overview**

- Cholesky QR: an algorithm for computing a QR factorization via Cholesky factorization
  - √ very suitable for high-performance computing
  - ✓ simple and easy to implement
  - √ numerically unstable
- Studies aiming for improving its stability
  - ✓ mixed-precision approach (by I. Yamazaki et al.)
  - ✓ our focus: with reorthogonalization (CholeskyQR2)
    - theoretical round-off error analysis
    - performance evaluation on the K computer

## Our target problem

Tall-skinny QR factorization on a large-scale parallel computer



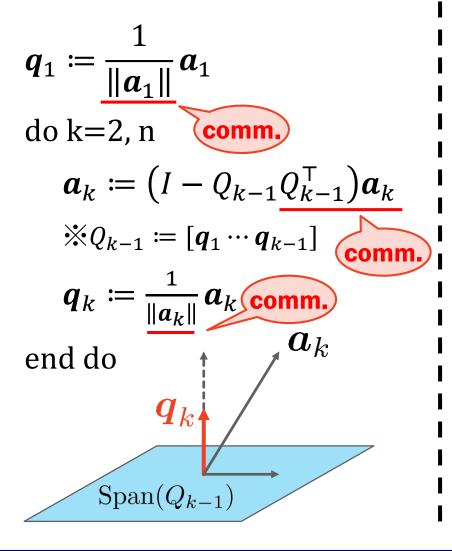
#### Applications

- computing of an orthogonal basis in block subspace projection methods
- preprocessing for the SVD of tall and skinny matrices
- generating an orthogonal transformation for dense-to-band reduction

Efficient parallel algorithm for computing tall-skinny QR fact. is required!

## **Comm. In conventional algorithms**

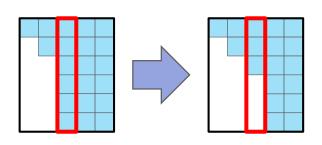
#### Gram-Schmidt (CGS)



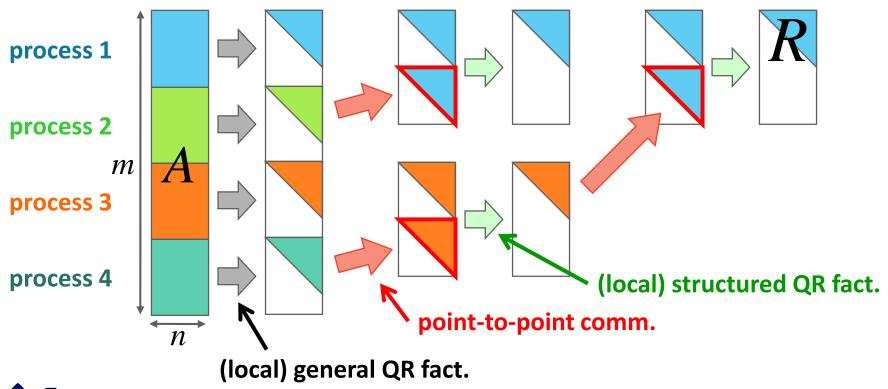
#### Householder QR

do k=1, n
$$[t_k, y_k] \coloneqq \text{house}(a_k)$$

$$A \coloneqq (I - t_k y_k y_k^{\mathsf{T}}) A$$
end do **comm.**



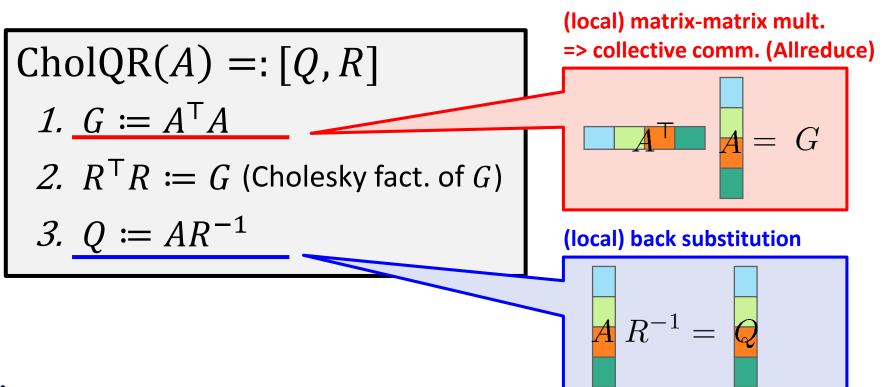
## TSQR algorithm ( J. Demmel, et al., 2012 )



#### Features

- Comm.-Avoiding: only  $\log_2 P$  p-to-p comms. (= 1 global collective comm.) (Householder QR requires O(n) collective comms.)
- numerically as stable as Householder QR (and much more than GS algorithms)
- similar computations (but in reverse order) are needed to form the explicit Q.

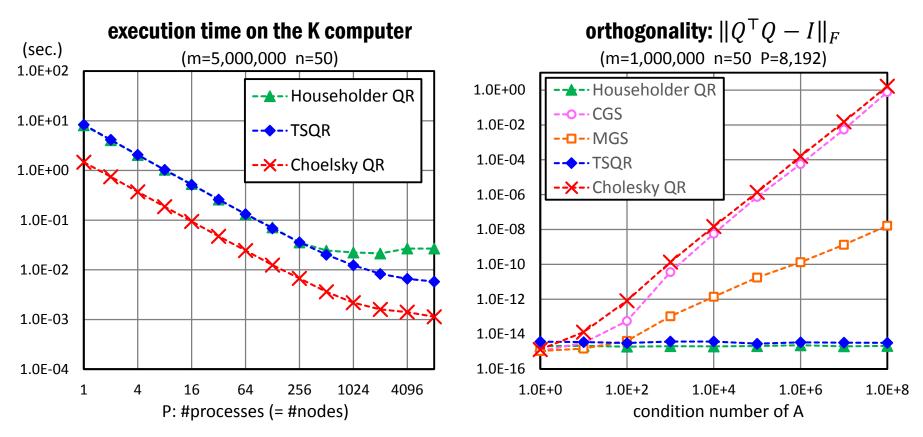
## **Cholesky QR algorithm**



#### Features

- Comm.-Avoiding: only 1 global collective comm. (Allreduce).
- #flops. is about half that of TSQR (as in Householder QR vs. GS)
- consist of a few fundamental (and usually highly tuned) operations
- known to be numerically unstable

## TSQR vs. Cholesky QR



- Cholesky QR is much faster than TSQR (and Householder QR).
- Cholesky QR becomes unstable as cond(A) grows (as in CGS). (residual  $||QR A||_F$  is small in every algorithm.)

Cholesky QR is fast but not practical due to its numerical instability.

## The CholeskyQR2 algorithm

#### Motivation

- Study on SVQB [A. Stathopoulos & K. Wu, 2002]
  - reporting that repeating Cholesky QR improves the numerical stability
- Studies on TSQR [J. Demmel, et al., 2012, etc.]
  - no comparison with repeated Cholesky QR algorithm
- **Relationship to Gram-Schmidt type algorithms** 
  - improvement of numerical stability by reorthogonalization (as in CGS2)
  - "twice is enough" (W. Kahan & B. Parlett) is applicable?

triangular orthogonalization

$$A \underbrace{\hat{R}_1 \cdots \hat{R}_k}_{\text{upper triangular}} = Q, \quad \left(\hat{R}_1 \cdots \hat{R}_k\right)^{-1} =: R.$$

CGS, MGS, Cholesky QR, ...

orthogonal triangularization

$$A \underbrace{\hat{R}_1 \cdots \hat{R}_k}_{\text{upper triangular}} = Q, \quad \left(\hat{R}_1 \cdots \hat{R}_k\right)^{-1} =: R.$$

$$\underbrace{\left(\hat{Q}_k \cdots \hat{Q}_1\right)}_{\text{orthogonal}} A = \begin{bmatrix} R \\ O \end{bmatrix}, \quad \left(\hat{Q}_k \cdots \hat{Q}_1\right)^{-1} \begin{bmatrix} I_n \\ O \end{bmatrix} =: Q.$$

Householder QR, TSQR, ...

We focus on an algorithm of repeating Cholesky QR twice (Cholesky QR2).

(CholeskyQR2 can be interpreted as a variant of Cholesky QR with reorthogonalization.)

## **CholeskyQR2 algorithm**

$$CholQR2(A) =: [Q, R]$$

1. 
$$[Q_1, R_1] := \text{CholQR}(A)$$

2. 
$$[Q, R_2] := \text{CholQR}(Q_1)$$

3. 
$$R := R_2 R_1$$
 reorthogonalization

1. 
$$W := A^{\mathsf{T}}A$$

2. 
$$R_1^{\mathsf{T}} R_1 \coloneqq W$$

3. 
$$Q_1$$
: =  $AR_1^{-1}$ 

1. 
$$W := Q_1^{\mathsf{T}} Q_1$$

2. 
$$R_2^{\mathsf{T}}R_2 \coloneqq W$$

3. 
$$Q := Q_1 R_2^{-1}$$

#### Features

- Comm.-Avoiding: only 2 global collective comms.
- #msgs. and #words are twice that of Cholesky QR (and TSQR).
- #flops. is as much as TSQR (twice that of Cholesky QR)
- consist of a few fundamental (and usually highly tuned) operations
- can be interpreted as a variant of Cholesky QR with reorthogonalization.

## Comparison of parallel execution costs

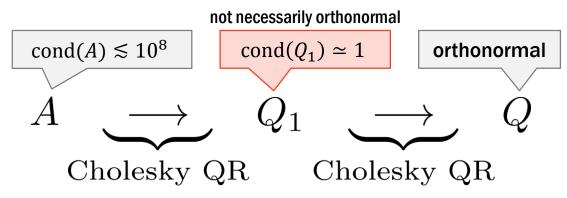
#msgs and #words are converted into point-to-point comm.

|        | TSQR                |                        | CholeskyQR2         |                         |
|--------|---------------------|------------------------|---------------------|-------------------------|
| #flops | 2mn²/P              | general QR fact.       | $2mn^2/P$           | computing $A^{T}A$      |
|        | 2mn <sup>2</sup> /P | (general) forming Q    | 2mn <sup>2</sup> /P | back substitution       |
|        |                     |                        | $2n^3/3$            | Cholesky fact.          |
|        |                     |                        | $2n^3/3$            | forming R               |
|        | $(2n^3\log_2 P)/3$  | structured QR fact.    | $n^2 \log_2 P$      | in reduction (addition) |
|        | $(2n^3\log_2 P)/3$  | (structured) forming Q |                     |                         |
| #msgs  | $\log_2 P$          | for QR fact.           | $2\log_2 P$         | reduce                  |
|        | $\log_2 P$          | for forming Q          | 2log <sub>2</sub> P | broadcast               |
| #words | $(n^2 \log_2 P)/2$  | for QR fact.           | $n^2 \log_2 P$      | reduce                  |
|        | $(n^2 \log_2 P)/2$  | for forming Q          | $n^2 \log_2 P$      | broadcast               |

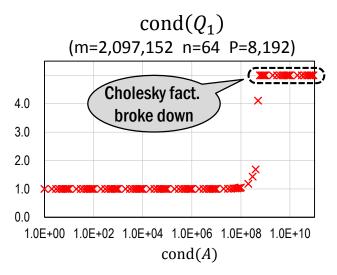
CholeskyQR2 requires cheaper reduction operation but x2 comm. cost.

### Theoretical results on stability

#### **♦** Mechanism of CholeskyQR2



(assuming that Cholesky fact. numerically does not break down)



#### Theorem (Y. Yamamoto, et al., 2015)

Let  $\hat{Q}$ ,  $\hat{R}$  be the computed QR fact. of A by CholeskyQR2 in floating-point arithmetic.

lf

$$\operatorname{cond}(A) \le \frac{1}{8\sqrt{(m+n+1)n}} \cdot \frac{1}{\sqrt{\epsilon}} \ (\simeq 10^8),$$

then

$$\|\hat{Q}^{\top}\hat{Q} - I\|_F \le 6(m+n+1)n\epsilon, \quad \|\hat{Q}\hat{R} - A\|_F \le 5n^2\sqrt{n}\epsilon.$$

( $\epsilon$  is the unit roundoff, and  $\epsilon \simeq 10^{-16}$  in double precision.)

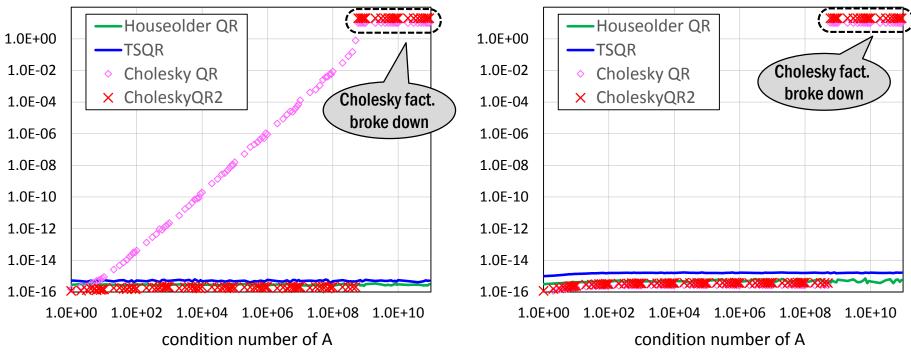
## **Experimental rsults on stability**

Test matrix:  $A=V_1\Sigma V_2,\ \Sigma=\mathrm{diag}(1,\sigma^{\frac{1}{n-1}},\ldots,\sigma),\ V_1,V_2:$  random orthogonal matrices

(m=2,097,152 n=64 P=8,192 @ Fx10 supercomputing system Oakleaf-FX)

orthogonality:  $||Q^{T}Q - I||_{F}/\sqrt{n}$ 

residual:  $||A - QR||_F / ||A||_F$ 



- CholeskyQR2 is as stable as TSQR until Cholesky fact. breaks down.
- Threshold of breakdown is around  $10^8$  (in which  $cond(A^TA) = 10^{16}$ ).

Stability of Cholesky QR is greatly improved (,though still worse than TSQR).

## Performance evaluation on the K computer

#### **Evaluation conditions**

#### Computational environment: K computer (RIKEN, Japan)

- SPARC64™ VIIIfx (2.0 GHz, 8 cores) x 1 / node
- 16GB memory / node: DDR3 SDRAM, 64GB/s
- 6D mesh/tours network (Tofu): 5GB/s/link, bidirectional
- assignment: 1 process / node, 8 threads /process
- using MPI & BLAS (thread parallel ver.) by Fujitsu



(http://www.aics.riken.jp/)

#### Implementations

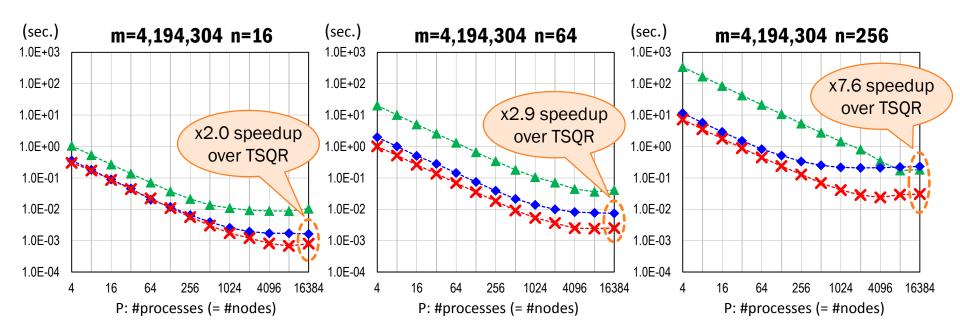
- CholeskyQR2
  - ✓ simple implementation based on BLAS, LAPACK routines
  - ✓ using DGEMM for computing  $A^TA$  (since DSYRK is less tuned)
- TSQR
  - ✓ general QR fact.: recursive QR based on DGEMM
  - ✓ structured QR fact.: self-coding with simple loop blocking (not using BLAS)
  - ✓ computing compact-WY representations for forming explicit Q

#### ◆ Test problem

• computing the QR fact. (forming explicit Q) of a random matrix

## Total exe. time ( strong scaling )

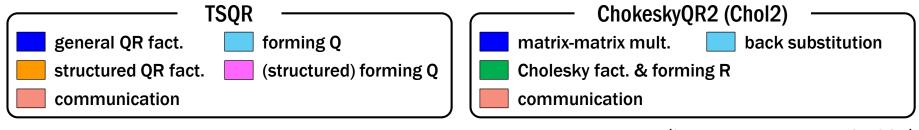




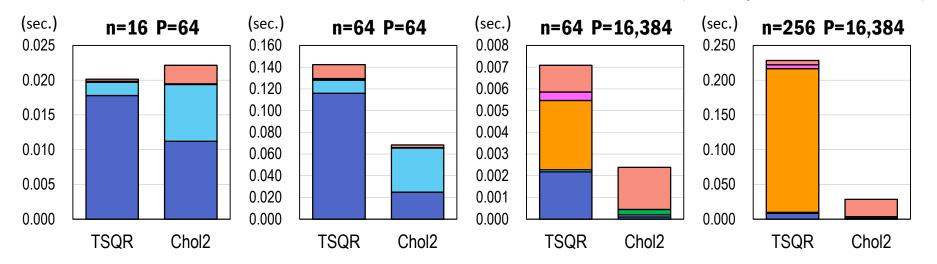
- TSQR and CholeskyQR2 are much faster than ScaLAPACK.
   (excepting when n=256 and P is large for TSQR)
- CholeskyQR2 outperforms TSQR.
   (not only when P is large but also when P is small)

CholeskyQR2 is still efficient from the viewpoint of parallel performance.

#### **Breakdown of execution time**



(in every case, m=4,194,304)

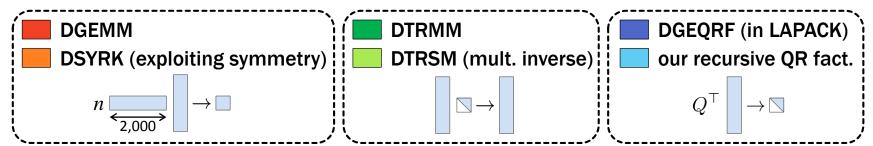


- performance gap of local computational kernels: matrix-matrix mult. is much higher performance than general QR fact.
- difference of reduction operation:
   cost for structured QR fact. becomes a serious bottleneck in TSQR.

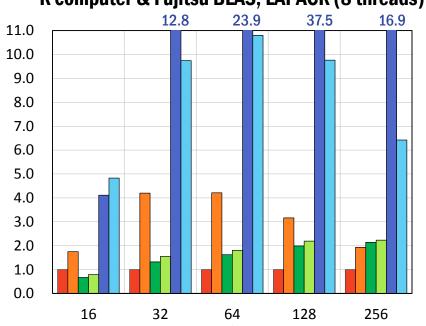
Although CholeskyQR2 requires more comm. cost, it has big advantages.

## **Local kernel performance**

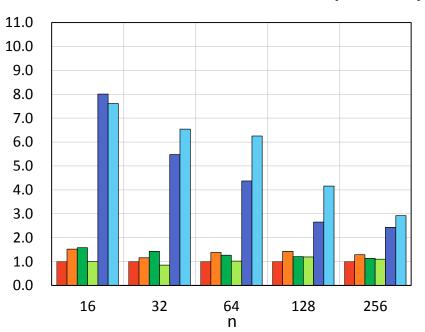
#### comparing relative unit time for one floating-point operation to DGEMM



#### K computer & Fujitsu BLAS, LAPACK (8 threads)

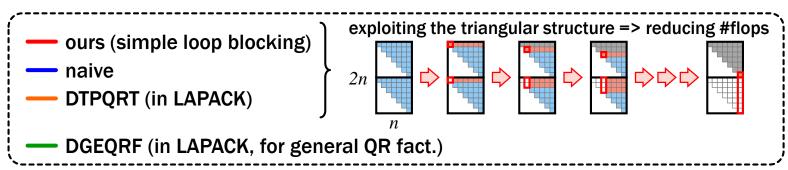


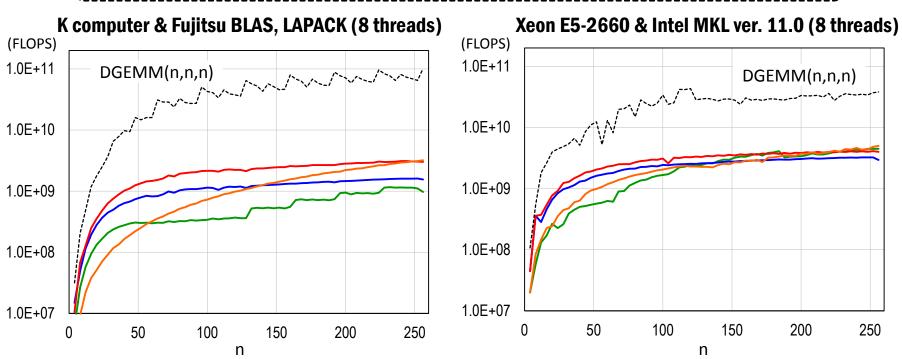
**Xeon E5-2660 & Intel MKL ver. 11.0 (8 threads)** 



Routines in CholeskyQR2 achieve higher performance than those in TSQR.

## Performance of structured QR fact.





(note: FLOPS is calculated assuming that #flops of structured QR fact. is  $2n^3/3$ .)

High performance implementation of structured QR fact. is difficult.

## Conclusion

### **Conclusion**

#### **♦**Summary

#### CholeskyQR2: repeating the Cholesky QR factorization twice

- is as stable as Householder QR (& TSQR) until  $cond(A) \lesssim 10^8$ .
- is still faster than TSQR (as far as on the K computer).
- can be applied to related algorithms (e.g. block Gram-Schmidt and block Householder QR by replacing panel factorization).
- is practical due to its simplicity of implementation.

#### Future work

- evaluation for much more ill-conditioned matrices
  - ✓ with double-double precision [I. Yamazaki, et al., 2014]
  - ✓ with more repeat with shift [Y. Yanagisawa, et al., 2014]
- evaluation for not tall-skinny matrices (& 2D data distribution)

#### For more details

- T. Fukaya, et al., CholeskyQR2: a simple and communicationavoiding algorithm for computing a tall-skinny QR factorization on a large-scale parallel system, ScalA'14, 2014.
- Y. Yamamoto, et al., Roundoff error analysis of the CholeskyQR2 algorithm, ETNA, Vol. 44, pp. 306-326, 2015.

## Thank you very much