Batched One-sided Factorizations on Hardware Accelerators Based on GPUs

Tingxing(Tim) Dong

Innovative Computing Laboratory University of Tennessee, Knoxville

Outline

- Motivations
- Algorithms and analysis
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

Motivations

- High-order FEMs,100x100, 200x200, batched GEMM, GEMV
- Astrophysics, subsurface transportation simulation,
 140x140 batched LU
- Radar signal processing,200x200 batched QR
- Computer visionbatched Cholesky
- Accelerating multifrontal solvers/preconditioners for HSS matrices
- Further accelerating CA sparse iterative solvers (with a new mixed-precision orthgonalization technique)

Definition of batched LA

1. many small size matrices

size: How small is small?

2. usually of the same size

if not?

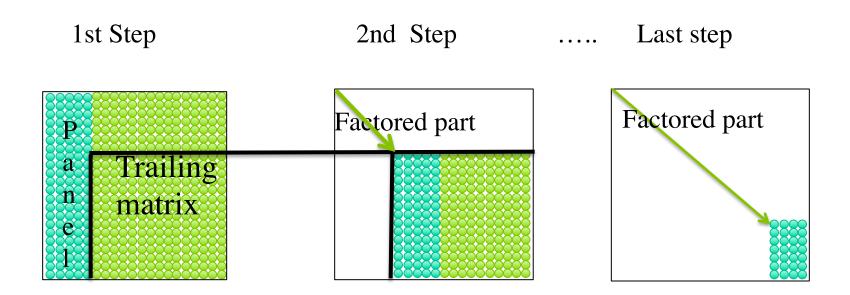
-padding

- -multiple batches, the same sized batched together
- 3 independent solved
- 4 processed together

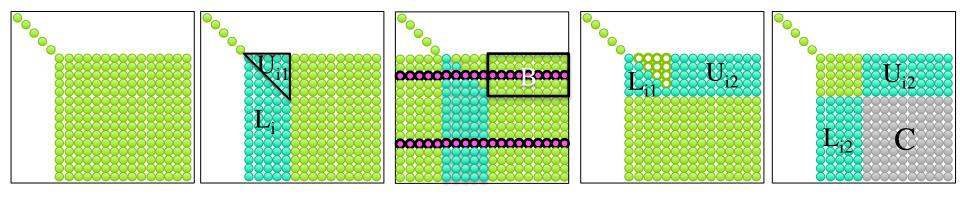
Outline

- Motivations
- Algorithms
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

Algorithm: a simplified overview



The LU factorization (details)



panel factorization swapping rows $PA_i = L_i U_{i1}$ dgetf2

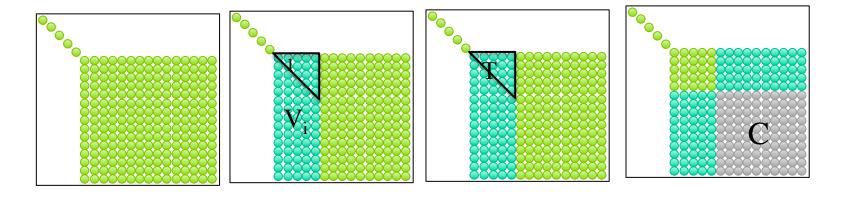
dlaswp

Triangular update $U_{i2}=L_{i1}^{-1}B$ dtrsm

Schur update $C = C - L_{i2} U_{i2}$ dgemm

- Panel factorization memory bound
- Triangular solve has little parallelism
- Schur complement (trailing matrix) update is the only easy task
- Performance killer: Partial pivoting

The QR factorization (details)



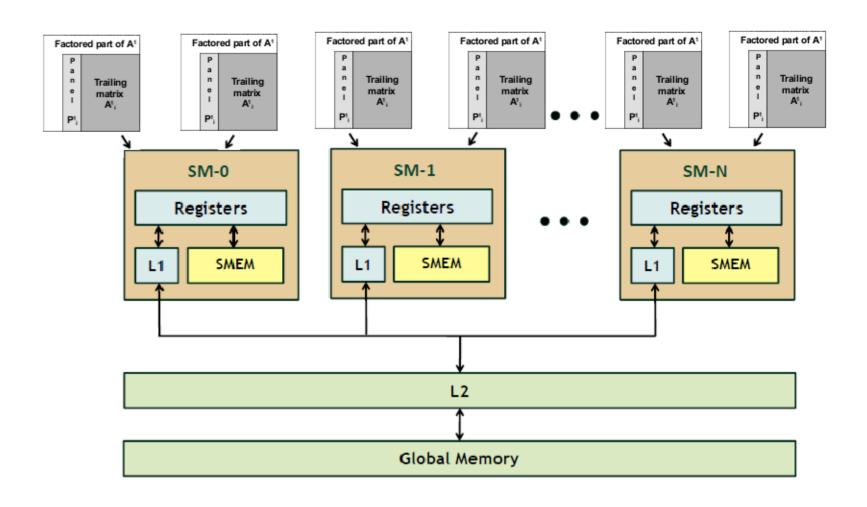
panel factorization *dgeqr2*

Triangular *dlarft*

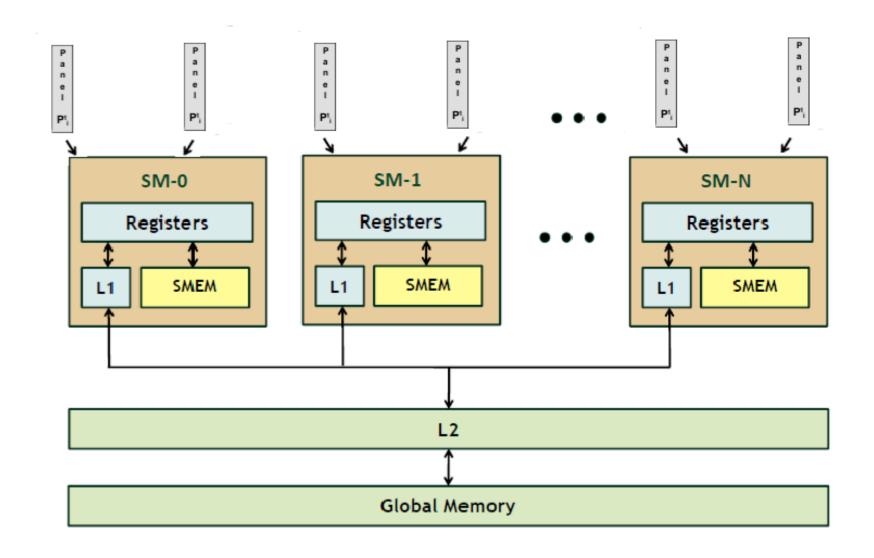
Schur update C = (I- VT*V*)C dlarfb(dgemm)

- Panel factorization: memory bound
- Triangular solve has little parallelism
- Schur complement (trailing matrix) update is the only easy task

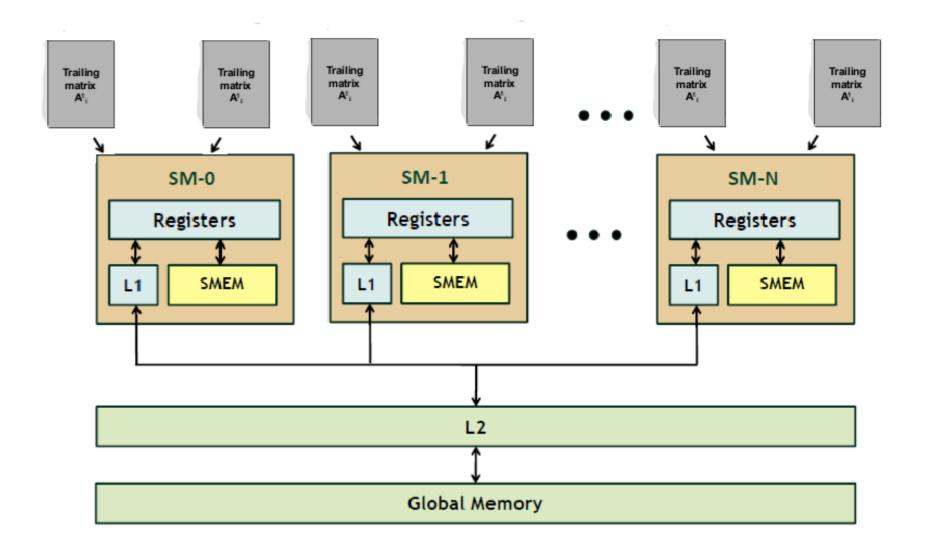
On GPU: a number of matrices distributed on the SMs



Batched panel factorization



Batched trailing matrix update



CUDA Programming model: SIMD(T)

- SIMD(T): Single Instruction, multiple data (threads)
- SIMT: NVIDIA call it SIMT

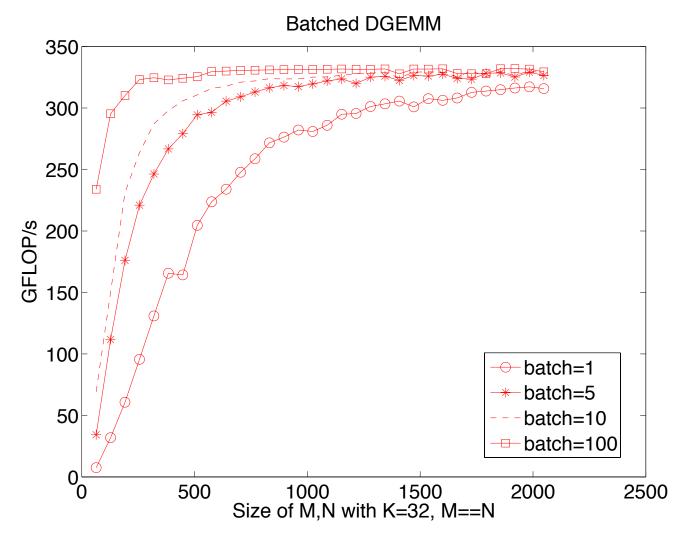


Target matrix size

- Main consideration
 - -GPU is saturated at certain matrix size.
- -Increasing number of matrices will lead to sequential processing

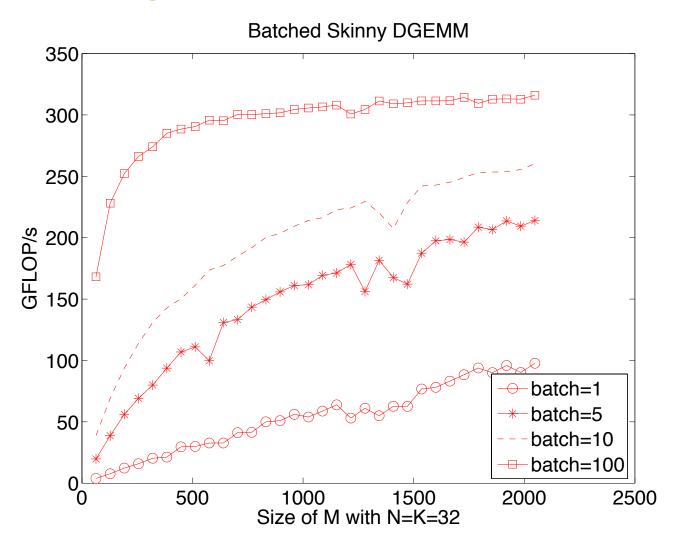
Trailing matrix behavior:

GEMM: two skinny matrix of the same size (A, B) produce a square matrix C



Panel behavior:

GEMM: a skinny matrix A multiply a small square one B produce a skinny matrix C



Target matrix size

Maximum size

square: 512x512

skinny(or fat): 1024, (big enough)

- Beyond 1024, still produce correct result but not optimized
- classic MAGMA hybrid routine

Outline

- Motivations
- Algorithms
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

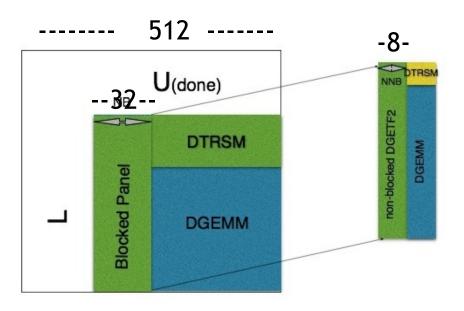
Building blocks: Batched BLAS

- Batched Level 1 BLAS xSCAL
- Batched Level 2 BLAS xGER, xGEMV,
- Batched Level 3 BLAS
 xHERK, xTRSM, xGEMM/stream xGEMM
- Batched xGETF2, xPOTF2, xGEQR2
- Batched xLARFG, xLARF, xLARFT
- Batched solvers

Optimizations

- General Principles
 - ---Recursive blocking
 - ---Streamed GEMM
- Cholesky
 - ---Left-looking, RL variants (15% improvement)
- LU
 - ---Parallel swapping (50% improvement)
- QR
 - ---Triangular solver: T (30% improvement)

Recursive blocking:

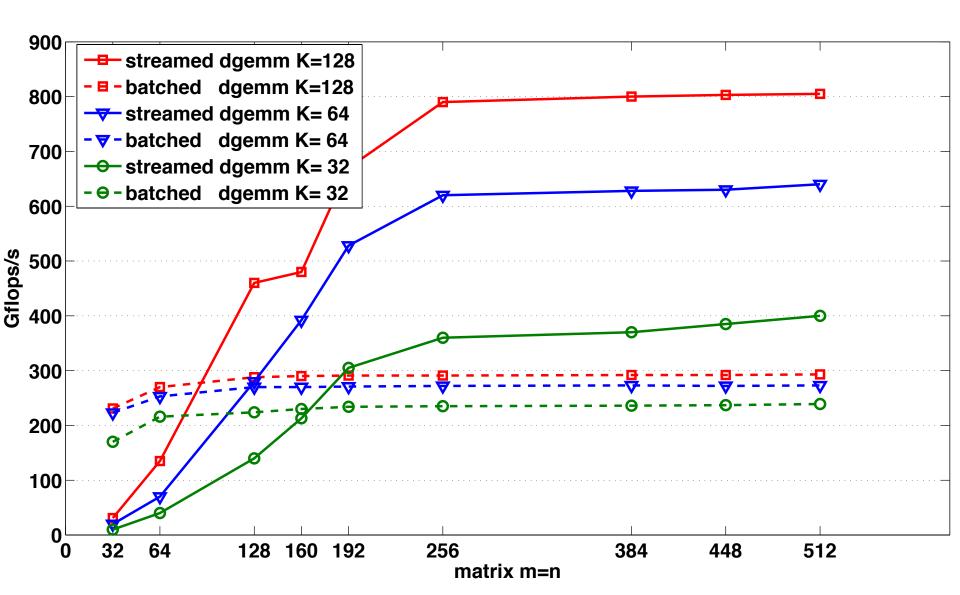


Proposition:

• Do Nested blocking:

Develop a nested blocking technique that block also the panel in order to replace the dger kernel by dgemm kernel.

DGEMM Performance

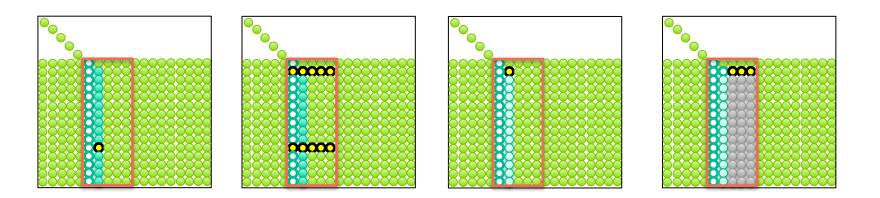


The killer in LU: serial swap

```
37.31% 928.92ms
                        4 232.23ms 211.04us 573.00ms [CUDA memcpy DtoH]
                        28 26.261ms 5.5867ms 48.661ms dlaswp_batched_kernel(int, double**, int, int, int, int**)
29.53% 735.31ms
                       512 515.80us 11.584us 1.6749ms kernel_dscal_dger(int, int, double**, int, int)
10.61% 264.09ms
                         5 39.935ms 1.2800us 100.09ms [CUDA memcpy HtoD]
 8.02% 199.67ms
                        28 6.5841ms 505.89us 27.352ms void fermiPlusDgemmLDS128 batched<bool=0, bool=0, int=4, int=4, int=4, int=3, int=3>(double
 7.40% 184.36ms
ouble, double, int)
                       5\2 190.24us 12.448us 226.08us kernel_dswap(int, double**, int, int, int**)
 3.91% 97.403ms
                       21 1.3138ms 356.09us 2.2575ms dtrsmbatched_copy_kernel(int, int, double**, int, double**, int)
 1.48% 36.786ms
                       448 63.118us 50.624us 75.200us kernel_idamax(int, int, double**, int, int, int, int**)
 1.14% 28.277ms
                       14 \(\delta 63.42\text{us}\) 462.49\text{us} 464.19\text{us}\) diaq_dtrtri_kernel_lower(magma_diag_t, double**, double**, int)
 0.26% 6.4878ms
                       14 182.29us 180.35us 184.54us triple dgemm update 16 part1 L(double**, double**, int, int, int)
 0.10% 2.5520ms
                       14 106.22us 164.54us 167.65us triple dgemm update 16 part2 L(double**, double**, int, int, int)
 0.09% 2.3271ms
                        64 35.370us 16.096us 52.800us kernel_idamax_2(int, double**, int, int, int, int**)
 0.09% 2.2637ms
                        56 7.48 Ous 7.2320us 8.1920us kernel dtrsm_set_pointer(double**, double**, int, int)
 0.02% 418.94us
                        48 7.570 us 7.2960 us 7.7440 us kernel_set_A(double**, double*, int, int, int)
 0.01% 363.39us
 0.01% 259.74us
                        34 7.6390 7.2320us 7.8400us kernel set_ipiv(int**, int*, int, int)
 0.01% 223.17us
                       16 13.948u 12.608us 14.336us Adjust_ipiv(int**, int, int)
                        14 8.6740us 8.6080us 8.7360us kernel set pointer(double**, double**, double**, double*, int, int, int)
 0.00% 121.44us
```

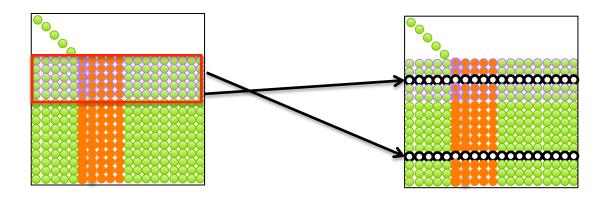
60% of the time

Serial swapping in panel:



Record their final destination row

Parallel swapping in trailing matrix



Triangular solver T in QR

- LAPACK algorithm
 - ---BLAS-2 routines: GEMV, TRMV results in memory un-coalesced access

- Batched:
 - -- GEMM, TRMV(in shared memory)
 - 30% improvement

Outline

- Motivations
- Algorithms
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

Testing hardware

CPU: two sockets of 8 core Intel Sandy Bridge E5-2670

2.65GHz, 20MB L3,

MKL 16 threads

TDP: 115W * 2

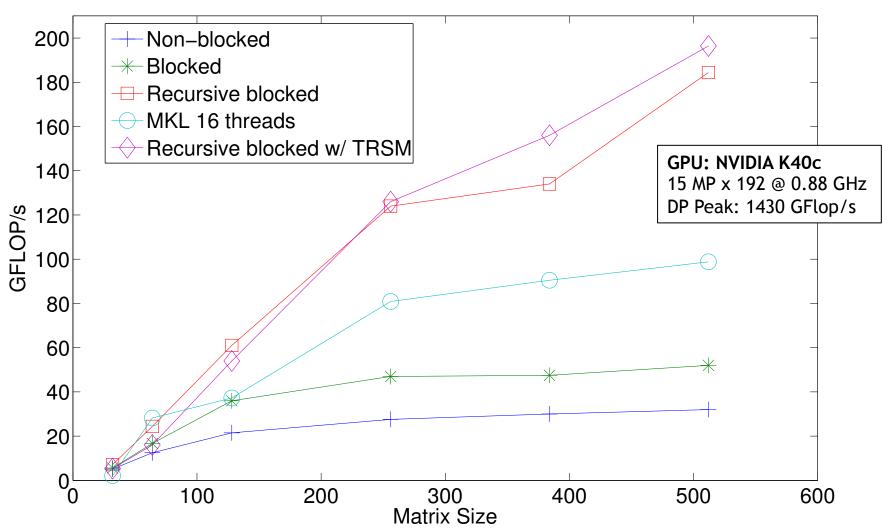
■ GPU: NVIDIA K40c,

2880 cores with 0.8GHz

TDP: 235W

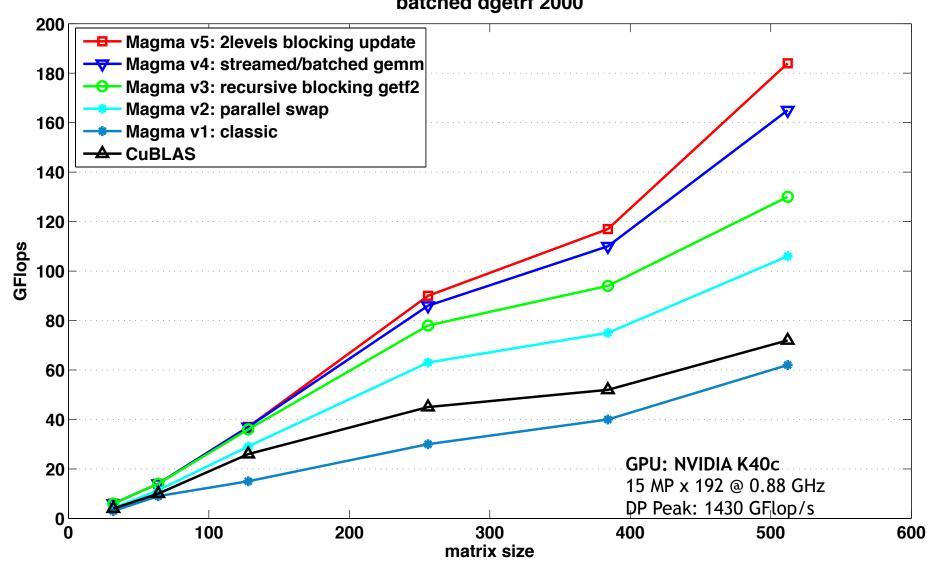
Batched Cholesky

Batched DPOTRF BatchCount=2000

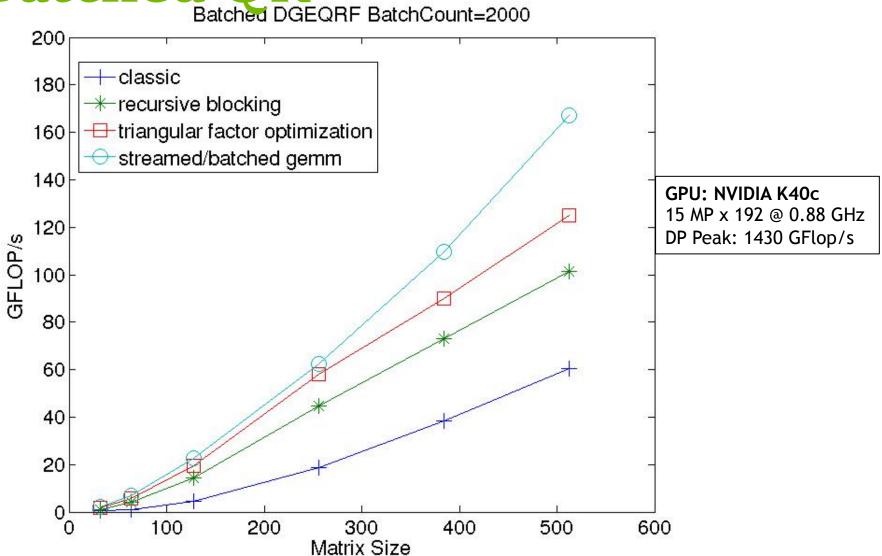


batched LU

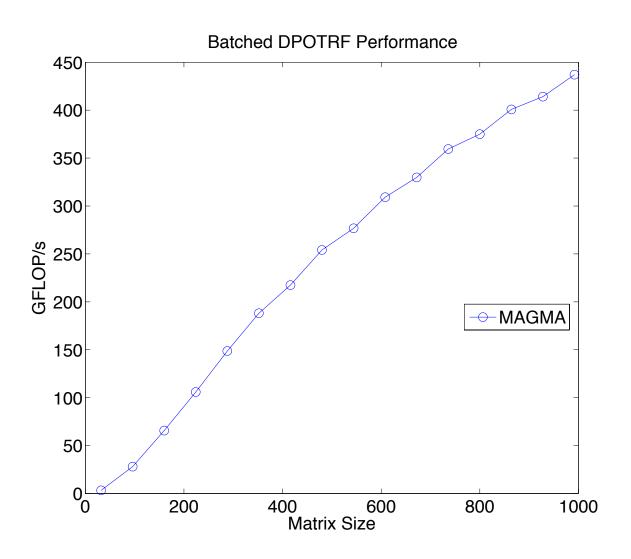
batched dgetrf 2000



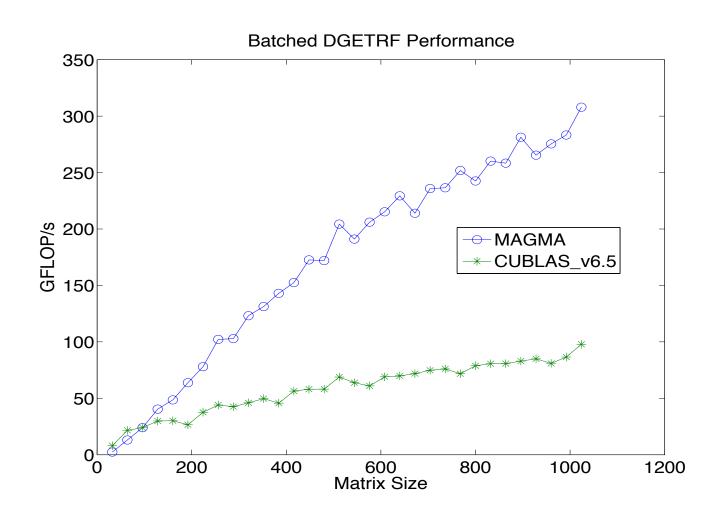
Batched OR Batched DGEQRF BatchCount=2000



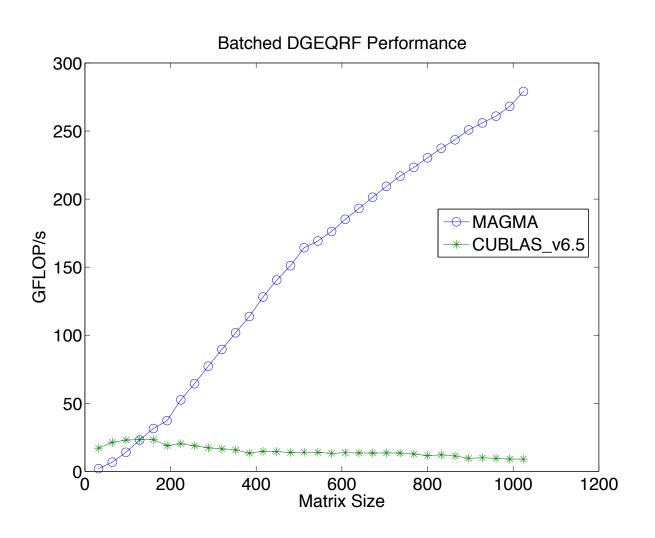
batched Cholesky (up to 1024)



batched LU(up to 1024)



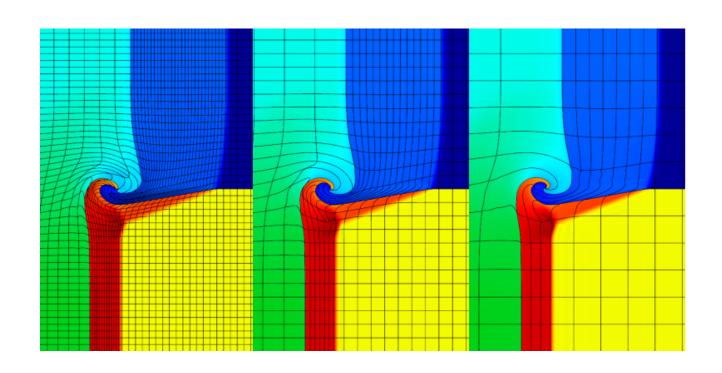
batched QR (up to 1024)



Outline

- Motivations
- Algorithms
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

High order method FEM



10,000 small matrix size:

- GEMM, GEMV
- Conjugate

order=1,2,3	Q1-Q0	Q2-Q1	Q3-Q2
$\hat{\phi}_{\cdot}$	12 * 4	30 * 24	60 * 126
Jz	dim * dim (2 or 3)		

Another batched solution(solution 2):

```
__device___ void MultAtB{ };
 _device__ void CalcAdjugate { };
 _device__ void SVD { };
 _global___ void kernel_unroll_loop
  int tid = threadIdx.x;
   tid call CalcAdjugate();
   tid call SVD();
   tid call MultAtB();
int main(){
          kernels_unroll_loop<<< threads, blocks >>>();
```

Another batched solution (solution 2):

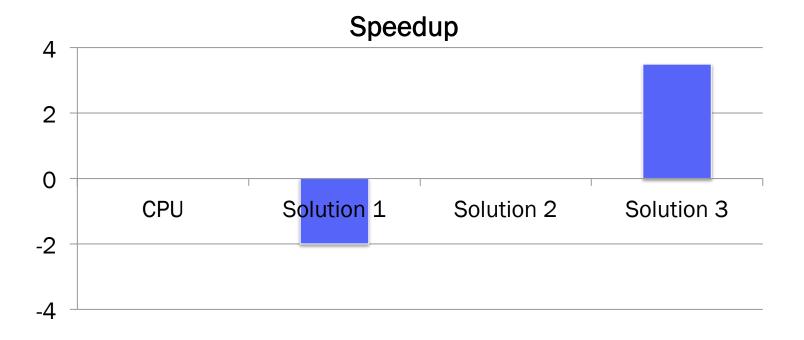
One thread solves one task (matrix problem)

- This approach is also adopted by
- V. Oreste, M.Fatica, N. A.Gawande, A.Tumeo, "Power/performance trade-offs of small batched LU based solvers on GPU"s. *Euro-Par 2013*.

Batched BLAS solution (solution 3)

- Solution 1: non-batched call MAGMA individually
- Solution 2: batched w/o multi-threading BLAS
- Solution 3: our solution

Fermi GPU and 6 core CPU



The reason of low performance solution 2

- One thread access one matrix (e.g 30*24)
 - memory non-coalesced
- The BLAS routines is parallel on task level
 - inherently sequential not multi-threading
- GPU's SIMT is not exploited

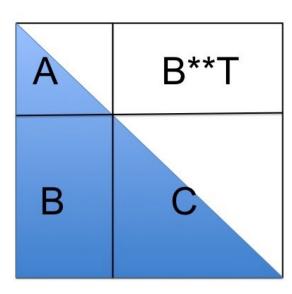
Outline

- Motivations
- Algorithms
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

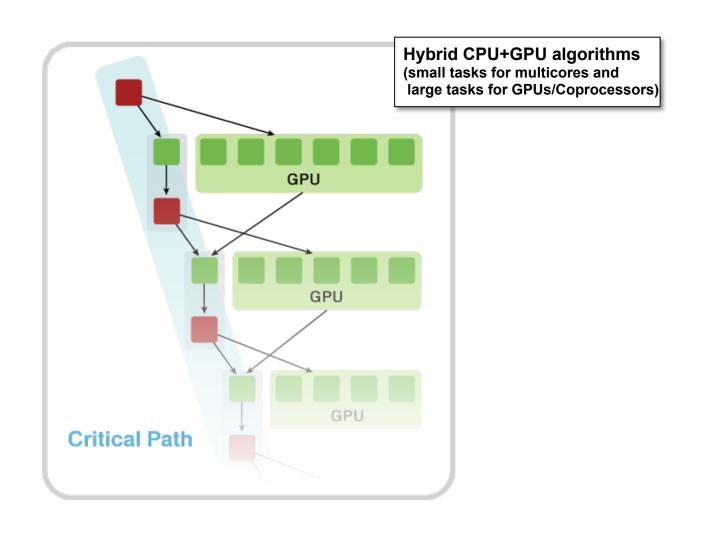
A native Cholesky target on large size

- Three solutions for large matrix size problem:
 - MKL: CPU solution
 - -- Hybrid MAGMA: A on CPU; B, C on GPU
- Native: A is factorized by batched implementation with one matrix

- B, C rely on the result of A
 - A is critical path
- Size of A is : nb = 512

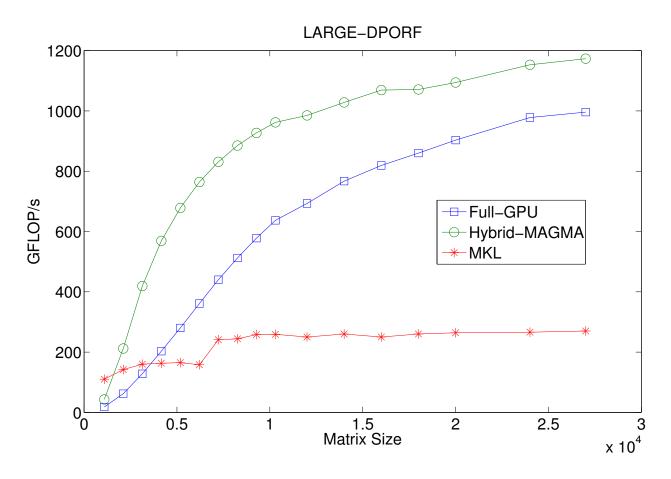


Tile A is on the critical path



A native Cholesky target on large size

Ratio of A = nb/N= N/nb * (nb * nb)/ (N*N)



How good it is

Gflop/s	K40c	CPU	Percentage of dgemm
dgemm	1200	300	N/A
Hybrid Cholesky	1200		1200/1500= 75%
Native(Full-GPU)	1000	N/A	1000/1200 = 83%

A native Cholesky performance-per-watt

- Full-GPU-1: no CPU idle power considered
- Full-GPU-2: CPU idle power

4.5Gflops/W

6 -Full-GPU-1 -Full-GPU-2 Performance-per-watt Hybrid *-MKL K40 Peak 2000 4000 6000 8000 10000 12000 Matrix Size

Outline

- Motivations
- Algorithms
- Implementations and optimizations
- Performance results
- A case study: a CFD application
- Power
- Conclusions and future work

Conclusions(1/2)

- Batched LA on Accelerators is not well studied
 - -- batched routines are recently added in CUBLAS
 - Vendor library (CUBLAS) performance are slow

- Accelerators are all in SIMD architecture
 - -- software must exploit the SIMT architecture
 - our batched solution is based on batched BLAS
 - -- multi-threaded BLAS to exploit the SIMT architecture

Conclusions(2/2)

- Optimizations require algorithmically change
 - --not porting LAPACK
 - -parallel swapping, triangular solver
- Batched problem is a building block for other problems
 - --native large size problem
 - --skinny QR: split into batches
 - --sparse LA

Future work: bi-digonalization

- 1st Step of SVD which is a two-sided factorization
- Applied in many areas

Building blocks required

- Batched Level 2 BLAS xGEMV,
- Batched Level 3 BLASxGEMM/stream xGEMM
- Batched xLARFG (householder),

thanks for your patience!