GPU Accelerated Memory-bound Linear Algebra Kernels

Ahmad Ahmad (Ahmad Abdelfattah)

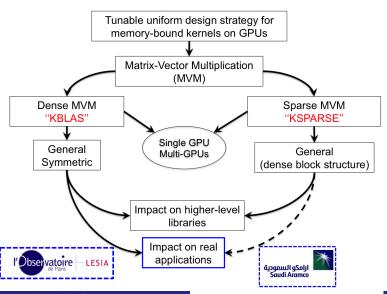
Supervised by: David Keyes Hatem Ltaief

Extreme Computing Research Center (ECRC), KAUST

April 17th, 2015

Ahmad Abdelfattah 1 / 45

What this work is all about ...



Outline

- Uniform Design Strategy
- 2 Dense MVM
- Sparse MVM
- 4 Results
- 6 Impact
- 6 Conclusion and Future Work

Ahmad Abdelfattah 3 / 45

Outline

- Uniform Design Strategy
- 2 Dense MVM
- 3 Sparse MVM
- 4 Results
- 5 Impact
- 6 Conclusion and Future Work

Ahmad Abdelfattah 4 / 45

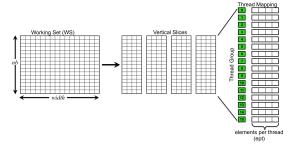
What is proposed?

- A set of design ideas that are incorporated together in one design strategy
 - Controllable through a set of tuning parameters
- Applied to dense MVM (GEMV and SYMV kernels)
 - Single GPU and multi-GPUs (block-column 1D cyclic format)
- Applied to sparse MVM (BSR format)
 - Single GPU and multi-GPUs (block row 1D cyclic)

Ahmad Abdelfattah 5 / 45

Design Ideas

- Hierarchical Register Blocking
 - An input matrix is subdivided into square or rectangular blocks
 - Working set (WS): the minimum amount of work assigned to a TB
 - Can be a block
 - Can span multiple adjacent blocks
 - Can be part of a block
 - Dimensions of the working sets are tunable in most cases



Ahmad Abdelfattah 6 / 45

Design Ideas

- Double Buffers: To enable data prefetching
- Always process in registers
 - Except for final reduction in shared memory
- Latency Hiding
 - On thread level: Assign more work per thread (ILP)
 - On TB level: Run multiple warps per TB
- Collaboration among TBs
 - Using atomic operations

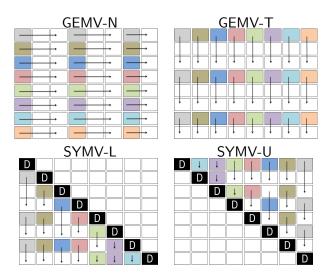
Ahmad Abdelfattah 7 / 45

Outline

- Uniform Design Strategy
- 2 Dense MVM
- 3 Sparse MVM
- 4 Results
- 5 Impact
- 6 Conclusion and Future Work

Ahmad Abdelfattah

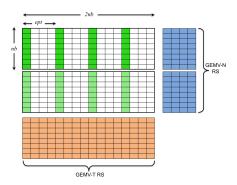
Dense MVM: Grid Design



Ahmad Abdelfattah 9 / 45

Dense MVM: TB Design

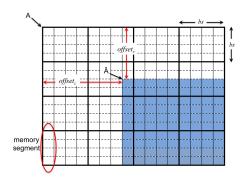
- A block ≡ two working sets
- ullet There is a variant of GEMV where a block \equiv one working set



Ahmad Abdelfattah 10 / 45

Multiplication by a Submatrix

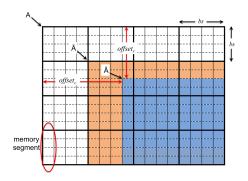
- Leading dimension of dense matrices are often padded to facilitate coalesced memory access
- However, multiplication by a submatrix \hat{A} does not guarantee coalesced memory access



Ahmad Abdelfattah 11 / 45

The Offsetting Technique

- Multiplies by \bar{A} instead, guarantees coalesced memory access for any submatrix
- Needs a new interface to convey the offset information (GEMV-OFFSET and SYMV-OFFSET)



Ahmad Abdelfattah 12 / 45

Multi-GPU kernels

- Two kernels: GEMV-MGPU and SYMV MGPU
- Very similar to their respective single GPU kernels
 - Each TB/thread has to compute a global ID with respect to other TBs/threads across all GPUs
 - The multi-GPU kernels use the offsetting technique

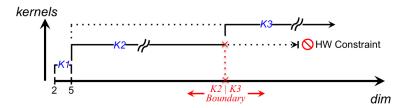
Ahmad Abdelfattah 13 / 45

Outline

- Uniform Design Strategy
- 2 Dense MVM
- 3 Sparse MVM
- 4 Results
- 5 Impact
- 6 Conclusion and Future Worl

Splitting Block Size Range

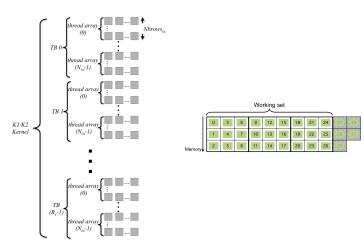
- Generally, block size bs can be any value
- It is difficult to have one kernel that covers the entire range
- We propose three kernels to cover the range of bs
 - K1: small blocks $(2 \le bs \le 5)$
 - K2: medium blocks ($5 \le bs \le 45$)
 - *K3*: large blocks (*bs* > 45)
- Ranges are flexible, except for K1



Ahmad Abdelfattah 15 / 45

Kernel K1: Small Blocks

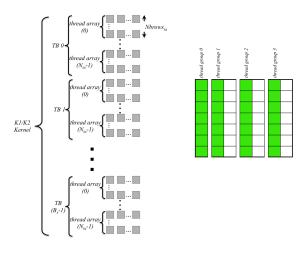
• Thread arrays are strictly warps



Ahmad Abdelfattah 16 / 45

Kernel K2: Medium Blocks

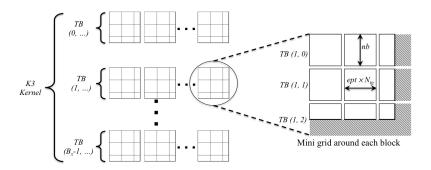
• Thread arrays are NOT strictly warps



Ahmad Abdelfattah 17 / 45

Kernel K3: Large Blocks

- A working set is part of a block
- Design is typical to a GEMV kernel within a block



Ahmad Abdelfattah 18 / 45

Multi-GPU kernels

- KSPARSE uses 1D cyclic distribution of block rows
- Each GPU ends up computing certain segments of y
- The RowPtr array has to be reevaluated on each GPU
- The single-GPU BSRMV kernel can be used out of the box

Ahmad Abdelfattah 19 / 45

Outline

- Uniform Design Strategy
- 2 Dense MVM
- 3 Sparse MVM
- Results
- 5 Impact
- 6 Conclusion and Future Work

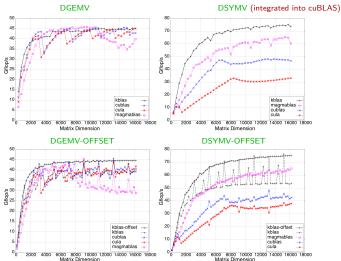
Ahmad Abdelfattah

System Setup

- Single GPU experiments
 - 16-core Intel Xeon CPU E5-2650 (2.00GHz)
 - 4 Tesla K20c GPUs (ECC off)
 - Ubuntu 14.04.1 LTS
 - CUDA driver version 340.32
 - CUDA Toolkit 5.5
- Multi-GPU experiments
 - Located at The Swiss National Supercomputing Center
 - 16 core Intel Xeon CPU E5-2670 (2.60GHz)
 - 8 K20c GPUs (ECC off)
 - CentOS release 6.3
 - CUDA driver version 331.62
 - CUDA Toolkit 5.5
- Sustained memory bandwidth of the GPU is measured at 184.18 GB/s (out of 208 GB/s theoretically)

Ahmad Abdelfattah 21 / 45

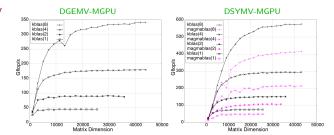
KBLAS Performance (K20c GPU)



- DGEMV: smoother performance, 98% of memory performance
- DSYMV: 15% asymptotic speedup, 1.83x speedup for relatively small matrices

KBLAS Multi-GPU Performance

Higher is better

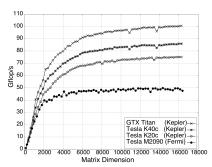


- Performance is scaled almost linearly across multi-GPUs
- DSYMV: 38% asymptotic speedup on 8 GPUs

Ahmad Abdelfattah 23 / 45

Dense MVM: Maintaining Performance

- As an example, DSYMV on four different GPUs
 - Fermi M2090 (130.32 GB/s) 76%
 - Kepler K20c (184.18 GB/s) 82%
 - Kepler K40c (230.92 GB/s) 75%
 - GTX TITAN (254.77 GB/s) 79%



Ahmad Abdelfattah 24 / 45

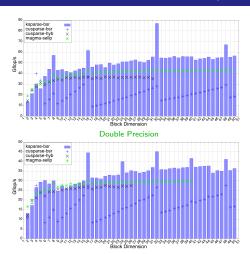
Sparse MVM: Matrix Test Suite

- We did some tests against synthetic matrices
- We also used matrices from the UFlorida collection, promoting every non-zero to a square block of a given size

Name	Size	Non-zeros	Description
airfoil_2d	14,214	259,688	Computational fluid dynamics
bauru5727	40,366	145,019	Eigenvalue/model reduction pb
cage10	11,397	150,645	Directed weighted graph
hvdc1	24,842	158,426	Power network pb
rajat22	39,899	195,429	Circuit simulation

Ahmad Abdelfattah 25 / 45

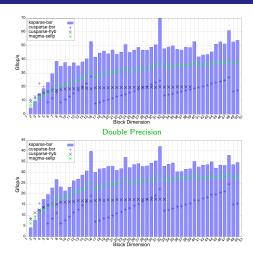
BSRMV against Other Formats (airfoil_2d)



 For SP/DP, speedups are up to 1.71x/1.64x against cuSPARSE-HYB, 2.00x/1.50x against MAGMA-SELLP, and 5.21x/3.78x against cuSPARSE-BSR

Ahmad Abdelfattah 26 / 45

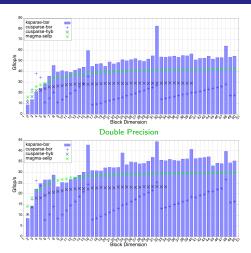
BSRMV against Other Formats (bauru5727)



 For SP/DP, speedups are up to 3.50x/2.41x against cuSPARSE-HYB, 1.89x/1.58x against MAGMA-SELLP, and 5.24x/4.28x against cuSPARSE-BSR

Ahmad Abdelfattah 27 / 45

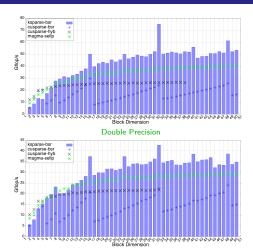
BSRMV against Other Formats (cage10)



 For SP/DP, speedups are up to 2.84x/1.93x against cuSPARSE-HYB, 1.98x/1.49x against MAGMA-SELLP, and 5.19x/3.85x against cuSPARSE-BSR

Ahmad Abdelfattah 28 / 45

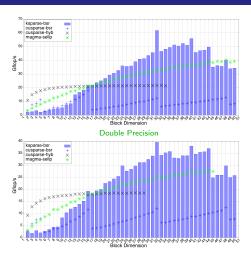
BSRMV against Other Formats (hvdc1)



 For SP/DP, speedups are up to 4.39x/2.57x against cuSPARSE-HYB, 1.96x/1.49x against MAGMA-SELLP, and 4.94x/3.58x against cuSPARSE-BSR

Ahmad Abdelfattah 29 / 45

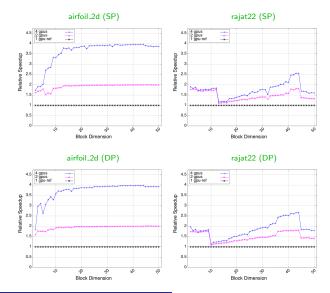
BSRMV against Other Formats (rajat22)



 For SP/DP, speedups are up to 2.85x/1.69x against cuSPARSE-HYB, 1.88x/1.55x against MAGMA-SELLP, and 7.17x/5.54x against cuSPARSE-BSR

Ahmad Abdelfattah 30 / 45

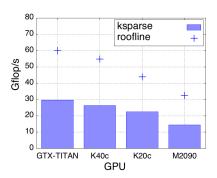
Sparse MVM: Multi-GPU Scaling



Ahmad Abdelfattah 31 / 45

Sparse MVM: Tuning KSPARSE

- Consider DBSRMV for bs = 7
- Same level of performance is maintained across different GPUs
 - Performance is within 46.5%, 45.76%, 48.97%, and 44.29% from its roofline on GTX TITAN, K40c, K20c, and M2090 GPUs



Ahmad Abdelfattah 32 / 45

Outline

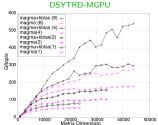
- Uniform Design Strategy
- 2 Dense MVM
- 3 Sparse MVM
- 4 Results
- 5 Impact
- 6 Conclusion and Future Work

Ahmad Abdelfattah

Impact on MAGMA

Higher is better



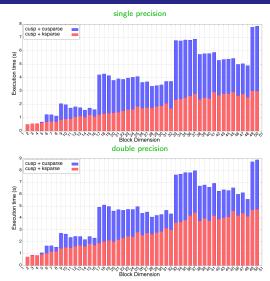


Performance improvements up to: 29% for DGEBRD, 59% for DSYTRD, and 103% for DSYTRD-MGPU

Ahmad Abdelfattah 34 / 45

Impact on CUSP: GMRES

Lower is better



For block sizes larger than 4, GMRES+KSPARSE is up to 3.42x (SP) and 2.62x (DP) faster

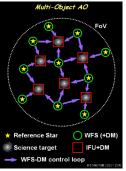
Impact on a Real Application: The E-ELT

Credits: ESO (http://www.eso.org/public/outreach/copyright/)

- In collaboration with Paris Observatory
- The project helps the design of MOSAIC
- MOSAIC is a multi-object spectrograph (MOS), proposed for the European Extremely Large Telescope (E-ELT)
 - The largest optical/near-infrared telescope in the world
 - weighs about 2700 tons, 39m is the main mirror diameter
 - Named the "biggest eye on the sky"
 - First light is expected early 2020s

Ahmad Abdelfattah 36 / 45

Impact on E-ELT: Multi-object Adaptive Optics (MOAO)



Credits: ESO (http://www.eso.org/public/outreach/copyright/)

- MOAO is the main concept behind the design of MOSAIC
- MOAO helps observe the evolution of a number of objects in parallel
- Fields of views are too large to be observed by a conventional AO system
- Only images of objects of interests are corrected

Ahmad Abdelfattah 37 / 45

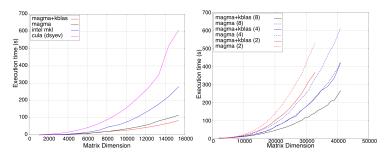
Impact on E-ELT: The Tomographic Reconstructor

- We want to simulate the image quality generated by the telescope
- Dependent on frequent computation of the tomographic reconstructor (R)
- $R = C_{tm} \cdot C_{mm}^{-1}$
- C_{mm} (40k×40k) is pseudo-inverted using SYEVD
- Contributions
 - Accelerate MAGMA-DSYEVD using KBLAS
 - An out-of-core DGFMM kernel

Ahmad Abdelfattah 38 / 45

Impact on E-ELT: Results

DSYEVD Performance (lower is better)

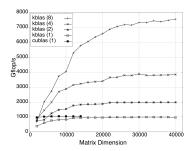


- Single GPU Performance
 - 7.2x, 3.4x, and 1.35x speedups over CULA, MKL, and MAGMA
- Multi-GPU Performance
 - 1.45x, 1.6x, and 1.7x speedups over MAGMA on 2, 4, and 8 GPUs

Ahmad Abdelfattah 39 / 45

Impact on E-ELT: Results

DGEMM Performance



- Up to 7.6 Tflop/s on 8 K20c GPUs
- 90% close to linear scaling
- Includes initialization and cleanup times

Ahmad Abdelfattah 40 / 45

Impact on E-ELT: Results

Overall Simulation Time: 263.49 s using 8 K20c GPUs

- 17.5x speedup over Intel MKL
- 60% improvement over MAGMA using 8 GPUs

Ahmad Abdelfattah 41 / 45

Outline

- 1 Uniform Design Strategy
- 2 Dense MVM
- 3 Sparse MVM
- 4 Results
- 5 Impact
- 6 Conclusion and Future Work

Ahmad Abdelfattah

42 / 45

In a nutshell

This work

- proposes a uniform design strategy for memory-bound kernels on GPUs
- focuses on MVM kernels (dense, sparse)×(single GPU, Multi-GPUs)
- shows impact on higher-level libraries
- shows impact on a real application

Ahmad Abdelfattah 43 / 45

Future Directions

- Autotuning
- Other memory-bound kernels
- Distributed memory systems
 - 2D cyclic layout (following ScaLAPACK)
- Batch operations and H-matrices (KSPARSE)

Ahmad Abdelfattah 44 / 45

THANK YOU!

KBLAS: http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx KSPARSE: http://ecrc.kaust.edu.sa/Pages/ksparse.aspx

Ahmad Abdelfattah 45 / 45