Divide & Conquer: a symmetric tridiagonal eigensolver

Grégoire Pichon

Supervisors: Mathieu Faverge, Azzam Haidar, Jakub Kurzak

August 29, 2014

Eigenproblems in PLASMA

PLASMA symmetric eigensolvers are following three stages

- $A = QTQ^T$: reduction to tridiagonal form
- $T = V \Sigma V^T$: tridiagonal eigensolver
- $A = Z\Sigma Z^T$ with Z = QV: back-transformation

Objectives

- Implement a tridiagonal eigensolver in PLASMA
- Rely on sequential MKL in spite of multi-threaded MKL

Outline

- Overview in LAPACK
- 2 Algorithm
- 3 Implementation
- 4 Timing

Eigenproblems in LAPACK

Algorithm	Cost	Practical cost	Extra space	Accuracy
QR	$O(n^3)$		<i>O</i> (<i>n</i>)	$O(\sqrt{n}\epsilon)$
BI	$O(n^3)$		O(n)	$O(\mathit{n}\epsilon)$
DC	$O(n^2)$ to $O(n^3)$	$O(n^{2.5})$	$O(n^2)$	$O(\sqrt{n}\epsilon)$
MRRR	$O(n^2)$	$O(n^{2.3})$	O(n)	$O(\mathit{n}\epsilon)$

Figure: LAPACK solvers for computing all eigenpairs

Algorithm	Time	Accuracy
BI	$O(nk^2)$	$O(n\epsilon)$
MRRR	O(nk)	$O(\mathit{n}\epsilon)$

Figure: LAPACK solvers for computing k eigenpairs

Outline

- Overview in LAPACK
- 2 Algorithm
- Implementation
- 4 Timing

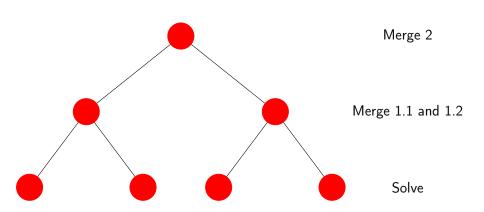
Divide & Conquer - Divide

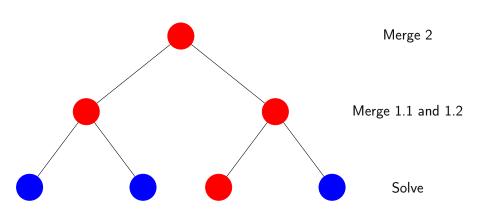
- Divide the problem into two half subproblems and recursively solve each subproblem
- Divide with a rank-1 approximation:

$$\begin{pmatrix}
 * & * \\
 * & * \\
 0 & 0 \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 * & * \\
 \beta & 0 \\
 * & *
\end{pmatrix} = \begin{pmatrix}
 * & * \\
 * & *' \\
 0 & 0 \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 * & * \\
 * & *' \\
 0 & 0 \\
 0 & 0
\end{pmatrix}
+ \begin{pmatrix}
 0 & 0 & 0 & 0 \\
 0 & \beta & \beta & 0 \\
 0 & \beta & \beta & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}$$

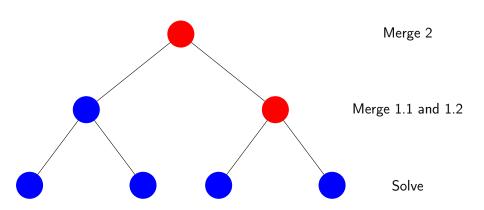
• Isolate independent subproblems: when an extra-diagonal element is small enough, no need for a rank-1 approximation

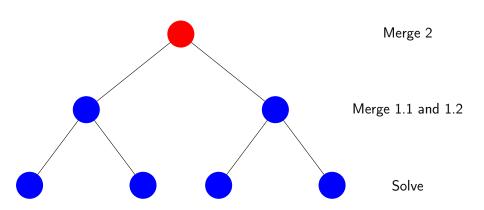
4日ト4個ト4差ト4差ト 差 からの



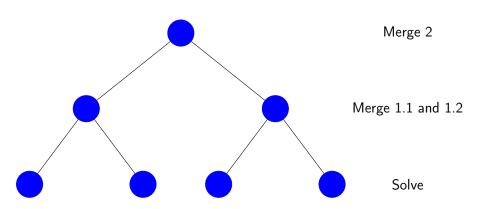


D&C

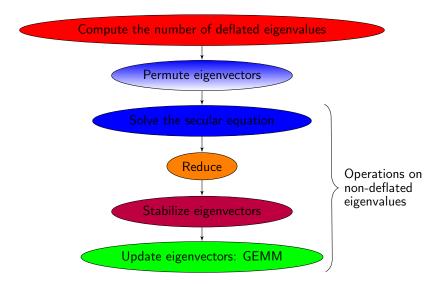




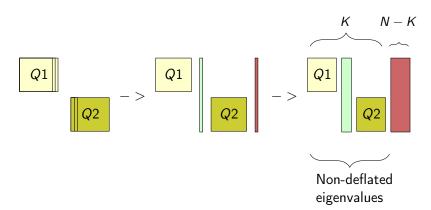
D&C



Merge step - ideas



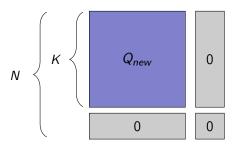
Merge step - deflate



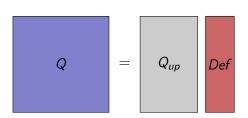
D&C

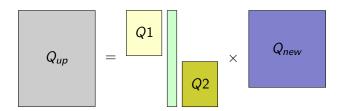
Merge step - compute eigenvectors

- Solve the secular equation (rely on LAPACK)
- Reduce
- Stabilize eigenvectors



Merge step - update eigenvectors





Outline

- Overview in LAPACK
- 2 Algorithm
- Implementation
- 4 Timing

Implementations

MKL LAPACK

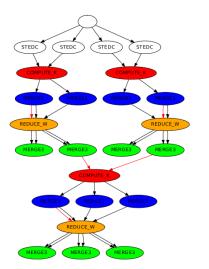
- MKL: LAPACK and link with optimised BLAS3
- Only GEMMs improved, a large part remains sequential
- Good speedup because in sequential, GEMMs represent 80% of the overall time

MKL ScaLAPACK

- Independent subproblems can be solved in parallel
- The merge process is parallel for the GEMMs and the secular equation
- Permutations are different from LAPACK version
- Limit: static scheduling

DAG

N = 1000, task size = 400, minimum solve size = 300



Four subproblems size 250

Two merges size 500

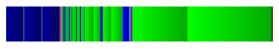
Two tasks: size 400 and size 100

One merge size 1000

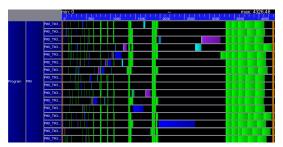
Three tasks: size 400 and size 200

Without deflation - GEMMs in parallel

Traces were obtained on sweetums, using 16 threads for a 10000×10000 matrix



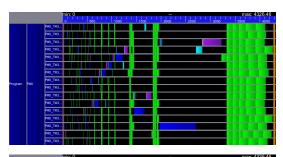
Sequential execution (55s)



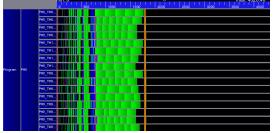
GEMMs in parallel (5s)

GEMM Stabilize
Secular eq Reduce

Without deflation - Merge step in parallel

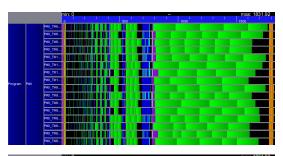


GEMMs in parallel

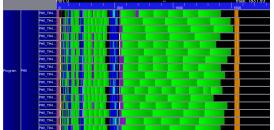


GEMMS and merge step in parallel

Without deflation - Independent subproblems in parallel



GEMMs and merge step in parallel

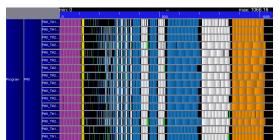


Subproblems in parallel

With deflation - Merge step in parallel

Traces were obtained on sweetums, using 16 threads for a 10000×10000 matrix

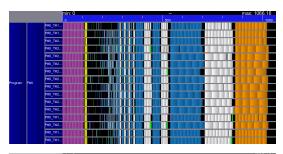
Sequential execution (3s)



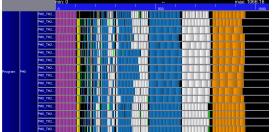
Merge step in parallel (1s)

Dlaset Swap
Permute copy Permute back

With deflation - Independent subproblems in parallel



Merge step in parallel

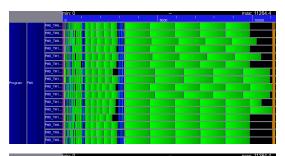


Subproblems in parallel

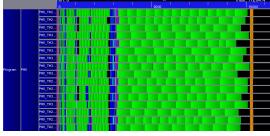
Extra workspace

- GEMMs need a workspace because they use twice Q
- After the reduction some workspace is available
- ullet GEMM: copy Q_{new} in S and then generate $Q=Q_{perm}S$
- ullet With an extra workspace, it is possible to generate eigenvectors in S in spite of Q and then avoid the copy
- GEMM₁ and GEMM₂ in parallel

Extra workspace - on sweetums, 16 threads



LAPACK workspace

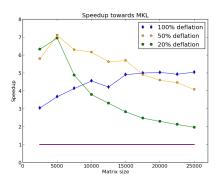


Extra workspace

Outline

- Overview in LAPACK
- 2 Algorithm
- 3 Implementation
- 4 Timing

Time On sweetums – 16 threads



- Subproblems can't be solved in parallel
- BLAS3 operations in parallel
- Compare with ScaLAPACK to be honest, even if designed for distributed architectures

Figure: MKL LAPACK

100% deflation: D(1:N-1) = 1 and $D(N) = 1e^{-6}$

50% deflation: $D(i) = \frac{1}{166} - (i-1)/(N-1)$

20% deflation: $D(i) = 1 - \frac{i-1}{N-1} \times (1 - 1e^{-6})$

Time On sweetums – 16 threads

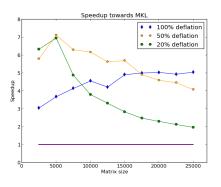


Figure: MKL LAPACK

Figure: MKL ScaLAPACK

100% deflation: D(1:N-1) = 1 and $D(N) = 1e^{-6}$

50% deflation: $D(i) = \frac{1}{166} - (i-1)/(N-1)$

20% deflation: $D(i) = 1 - \frac{i-1}{N-1} \times (1 - 1e^{-6})$

Time versus MR3 from University of Texas

Mode $1 \rightarrow 6$: dlatms Mode 10: Laplacian Mode 11: Wilkinson Mode 13: Legendre Mode 14: Laguerre Mode 15: Hermite

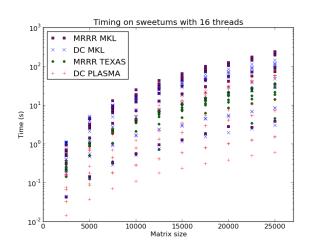


Figure: Timing on sweetums

Accuracy versus MR3 from University of Texas

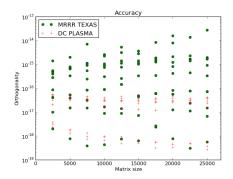


Figure: Orthogonality: $\frac{||Id - QQ^T||}{N}$

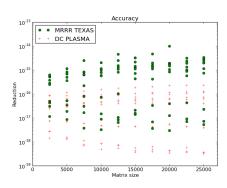


Figure: Reduction: $\frac{||A - Q\Sigma Q^T||}{||A|| \times N}$

Internship (INRIA/ICL)

Conclusion

In progress

- Timing with many different matrix properties and matrices from applications
- Compute subsets: optimisation in last GEMM for now

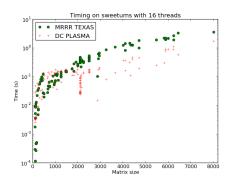
Future work

- Integrate the back-transformation in D&C
- Integration in DPLASMA, MAGMA
- Solving SVD using the same approach

Thanks for your attention.

Questions?

Timing versus MR3 from University of Texas



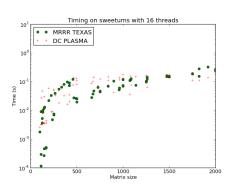


Figure: Application matrices

Figure: Zoom N < 2000

Matrices: bcsstkm, Alemdar, Godunov, matlab-ud, matlab-nd, nasa, nos, Wilkinson