
Sparse direct solvers on top of runtime
systems
ANR SOLHAR

E. Agullo, G. Bosilca, A. Buttari, A. Guermouche and
F. Lopez, Université de Toulouse-IRIT

Lunch Talk ICL 2014

The multifrontal QR method

The Multifrontal QR method

The multifrontal QR factorization is guided by a graph called
elimination tree:

• each node is associated with a
relatively small dense matrix called
frontal matrix (or front) containing k
pivots to be eliminated along with all
the other coefficients concerned by
their elimination

3/24 Lunch Talk ICL 2014

The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix

• factorization: the k pivots are
eliminated through a complete QR
factorization of the frontal matrix. As
a result we get:
◦ part of the global R and Q factors
◦ a triangular contribution block that will

be assembled into the father’s front

3/24 Lunch Talk ICL 2014

The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix

• factorization: the k pivots are
eliminated through a complete QR
factorization of the frontal matrix. As
a result we get:
◦ part of the global R and Q factors
◦ a triangular contribution block that will

be assembled into the father’s front

3/24 Lunch Talk ICL 2014

The Multifrontal QR method

Notable differences with multifrontal LU:

• fronts are rectangular, either over or under-determined

• assembly operations are just copies (with lots of indirect
addressing) and not sums. They can thus be done in any order
(like in LU) but also in parallel (most likely not efficient because of
false sharing issues)

• fronts are not full: they have a staircase structure. The zeroes in
the lower-leftmost part can be ignored. This irregular structure
makes the modeling of performance rather difficult

• fronts are completely factorized and not just partially. This makes
the overall size of factors bigger and thus the active memory
consumption less sensitive to the tree traversal

• contribution blocks are trapezoidal and note square

4/24 Lunch Talk ICL 2014

The Multifrontal QR method: parallelism

In the multifrontal methods we can distinguish two sources of
parallelism:

Tree parallelism

Frontal matrices located in
independent branches in the tree
can be processed in parallel

Node parallelism

Large frontal matrices factorization
may be performed in parallel by
multiple threads

5/24 Lunch Talk ICL 2014

The Multifrontal QR method in
qr mumps

Parallelism in qr mumps: a new approach

Our baseline is the approach used in qr mumps where the workload is
expressed as a DAG of tasks defined through a 1D Block-column
partitioning

In qr mumps threading is implemented through OpenMP and
scheduling of tasks is done “by hand”

7/24 Lunch Talk ICL 2014

Parallelism: a new approach

The scheduling is performed by a finely-tuned, hand-written code

N the fine-grained decomposition and the asynchronous/dynamic
scheduling deliver high concurrency and much better performance
compared to the classical approach (SPQR)

H the scheduler is not scalable (the search for ready tasks in the DAG
is inefficient)...

H ... extremely difficult to maintain...

H ... and not really portable

8/24 Lunch Talk ICL 2014

Add new features in qr mumps

We want to develop the following features in qr mumps:

• 2D partitioning of frontal matrices (finer granularity allowing
better parallelism) as 1D partitioning may not be adapted
◦ most fronts are overdetermined
◦ the problem is mitigated by concurrent front factorizations

N more concurrency
H more complex dependencies, more tasks

• Exploit GPUs

H memory transfers, CUDA kernels management

• Memory-aware algorithms (perform factorization under a given
memory constraint)

• Distributed memory architectures

H MPI layer

All these problems may be overcome by using runtime system

9/24 Lunch Talk ICL 2014

Add new features in qr mumps

We want to develop the following features in qr mumps:

• 2D partitioning of frontal matrices (finer granularity allowing
better parallelism) as 1D partitioning may not be adapted
◦ most fronts are overdetermined
◦ the problem is mitigated by concurrent front factorizations
N more concurrency
H more complex dependencies, more tasks

• Exploit GPUs

H memory transfers, CUDA kernels management

• Memory-aware algorithms (perform factorization under a given
memory constraint)

• Distributed memory architectures

H MPI layer

All these problems may be overcome by using runtime system

9/24 Lunch Talk ICL 2014

STF vs PTG models

STF vs PTG models

The Sequential Task Flow (STF) model in StarPU:

• The parallel corresponds to the sequential one except that
operations are not executed but submitted to the system in the
form of tasks

• Depending on data access in tasks and the order of submission, the
runtime infers dependencies among them and builds a DAG

Drawbacks of this model:

• The DAG is entirely unrolled in the runtime: limited scalability

11/24 Lunch Talk ICL 2014

STF vs PTG models

The Parametrized Task Graph (PTG) model in PaRSEC:

• The DAG is represented with a compact format where the different
type of tasks are defined (domain of definition, CPU/GPU
implementation) as well as their dependencies wrt other tasks
(input/output data)

• On task completion, the DAG is partially unrolled following
released data dependencies

Drawbacks of this model:

• programming model less intuitive than STF

Objective

Develop a PaRSEC version of qr mumps following the PTG model
and evaluate its effectiveness on a single-node, multicore systems

12/24 Lunch Talk ICL 2014

STF vs PTG models

The Parametrized Task Graph (PTG) model in PaRSEC:

• The DAG is represented with a compact format where the different
type of tasks are defined (domain of definition, CPU/GPU
implementation) as well as their dependencies wrt other tasks
(input/output data)

• On task completion, the DAG is partially unrolled following
released data dependencies

Drawbacks of this model:

• programming model less intuitive than STF

Objective

Develop a PaRSEC version of qr mumps following the PTG model
and evaluate its effectiveness on a single-node, multicore systems

12/24 Lunch Talk ICL 2014

PaRSEC multifrontal QR

PaRSEC Multifrontal QR

• The elimination tree is
represented in a main JDF

• The front factorization is
represented in separate JDFs
◦ 1D block partitioning
◦ 2D block partitioning (not

necessarily square) with flat,
binary (communication
avoiding) or hybrid panel
reduction trees

• Upon activation (allocating
memory and initializing
structures), the DAG
corresponding to the front
factorization is spawned in
PaRSEC

1 2

a a

3

a

14/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR

• The elimination tree is
represented in a main JDF

• The front factorization is
represented in separate JDFs
◦ 1D block partitioning
◦ 2D block partitioning (not

necessarily square) with flat,
binary (communication
avoiding) or hybrid panel
reduction trees

• Upon activation (allocating
memory and initializing
structures), the DAG
corresponding to the front
factorization is spawned in
PaRSEC

1 2

a a

3

a

p1 u2 u3

p2 u3

p3

s2 s3 c

a

14/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR

• The elimination tree is
represented in a main JDF

• The front factorization is
represented in separate JDFs
◦ 1D block partitioning
◦ 2D block partitioning (not

necessarily square) with flat,
binary (communication
avoiding) or hybrid panel
reduction trees

• Upon activation (allocating
memory and initializing
structures), the DAG
corresponding to the front
factorization is spawned in
PaRSEC

1 2

a a

3

a

p1 u2 u3

p2 u3

p3

s2 s3 c

a p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

c

aa

14/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR

• The elimination tree is
represented in a main JDF

• The front factorization is
represented in separate JDFs
◦ 1D block partitioning
◦ 2D block partitioning (not

necessarily square) with flat,
binary (communication
avoiding) or hybrid panel
reduction trees

• Upon activation (allocating
memory and initializing
structures), the DAG
corresponding to the front
factorization is spawned in
PaRSEC

1 2

a a

3

a p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

aaa

p1 u2 u3

p2 u3

p3

s2 s3 c

a p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

c

aa

14/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR

• Elimination tree and assembly operations have an irregular
input/output data-flow: tricky to express in the JDF format

... cj-1 cj

fi

c1 c2 ...

fi

r

... ...

c1 c2

r

cj-1 cj

• Fronts matrices have a sparse structure (staircase): the
corresponding factorization DAG must be adapted from dense
kernels

15/24 Lunch Talk ICL 2014

Experimental results

Matrix Gflops Ordering

1 LargeRegFile 19 Metis

2 EternityII A 39 Metis

3 EternityII E 107 Metis

4 cont11 l 112 Metis

5 sc205-2r 160 Metis

6 cat ears 4 4 184 Metis

7 karted 335 Metis

8 degme 558 Metis

9 flower 7 4 724 Metis

10 hirlam 1112 Metis

11 e18 1286 Metis

12 Rucci1 5179 Metis

13 TF17 15663 Metis

14 sls 26363 Metis

• System 1:
◦ IBM x3755
◦ AMD Opteron Processor 8431

@ 2.4 GHz, 4 × 6 cores
◦ 72 GB memory (NUMA)

16/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR: results

0

5

1 0

1 5

20

25

30
1 D
2D

qrm_starpu 1 D
2D

qrm_parsec

LargeRegFile

Eternity II_A

Eternity II_E

cont1 1 _l

sc205-2r

cat_ears

karted

degm
e

flow
er

hirlam

e1 8
Rucci1

TF1 7

sls

Speedup -- 24 cores

17/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR: results

0

5

1 0

1 5

20

25

30
1 D
2D

qrm_starpu 1 D
2D

qrm_parsec

LargeRegFile

Eternity II_A

Eternity II_E

cont1 1 _l

sc205-2r

cat_ears

karted

degm
e

flow
er

hirlam

e1 8
Rucci1

TF1 7

sls

Speedup -- 24 cores

17/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR: results

• In the etree the parent-child
dependencies are not finely
managed resulting in poorer
pipeline in the case of
qrm parsec

• Due to limitations in PaRSEC
(not in the PTG model) it is
not currently possible to achieve
a pure data-flow parallelism

1 2

a a

3

a p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

aaa

p1 u2 u3

p2 u3

p3

s2 s3 c

a p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

c

aa

18/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR: results

• In the etree the parent-child
dependencies are not finely
managed resulting in poorer
pipeline in the case of
qrm parsec

• Due to limitations in PaRSEC
(not in the PTG model) it is
not currently possible to achieve
a pure data-flow parallelism

1 2

a a

3

a p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

aaa

p1 u2 u3

p2 u3

p3

s2 s3 c

a p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

c

aa

18/24 Lunch Talk ICL 2014

PaRSEC Multifrontal QR: results

• In the etree the parent-child
dependencies are not finely
managed resulting in poorer
pipeline in the case of
qrm parsec

• Due to limitations in PaRSEC
(not in the PTG model) it is
not currently possible to achieve
a pure data-flow parallelism

1 2

a a

3

a p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

aaa

p1 u2 u3

p2 u3

p3

s2 s3 c

a p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

c

aa

18/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we take advantage of the PTG model?

• The STF model allows a static approach: front partitioning occurs
at the beginning of the factorization

• The PTG model allows a dynamic approach: front partitioning
occurs upon front activation

In the PTG model the front partitioning may be decided depending
on the context of execution

19/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Tree parallelism at the bottom of the tree: coarse grain
partitioning (1D partitioning or rectangular tiles)
◦ better kernel efficiency
◦ less tasks: less scheduling overhead

1

3 4

5

2

11

6

8 9

10

7

20/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Tree parallelism at the bottom of the tree: coarse grain
partitioning (1D partitioning or rectangular tiles)
◦ better kernel efficiency
◦ less tasks: less scheduling overhead

1

3 4

5

2

11

6

8 9

10

71

3 4

5

2 6

8 9

7

20/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Tree parallelism at the bottom of the tree: coarse grain
partitioning (1D partitioning or rectangular tiles)
◦ better kernel efficiency
◦ less tasks: less scheduling overhead

1

3 4

5

2

11

6

8 9

10

71

3 4

5

2 6

8 9

71

4

2 6

9

71

4

2 6

9

7

20/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Node parallelism at top of the tree or when reaching a memory
constraint: fine grain partitioning
◦ more parallelism
◦ better pipeline

1

3 4

5

2

11

6

8 9

10

7

21/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Node parallelism at top of the tree or when reaching a memory
constraint: fine grain partitioning
◦ more parallelism
◦ better pipeline

1

3 4

5

2

11

6

8 9

10

71

3 4

5

2

21/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Node parallelism at top of the tree or when reaching a memory
constraint: fine grain partitioning
◦ more parallelism
◦ better pipeline

1

3 4

5

2

11

6

8 9

10

71

3 4

5

21

3 4

5

2

21/24 Lunch Talk ICL 2014

STF vs PTG: Front partitioning

How can we adapt the front partitioning depending on the context of
execution?

• Extremely challenging to apply these rules in practice:
◦ Huge search space for parameters

• Tile dimensions
• Inner blocking sizes
• Panel reduction trees

◦ Take into account the sparse structure of frontal matrices (staircase
structure)

22/24 Lunch Talk ICL 2014

Conclusions and future work

Conclusions on PaRSEC

• More challenging to use than other runtimes systems

• Potentially more scalable

• Some features should be added PaRSEC to enhance the current
version of qr parsec

Ongoing and Future work

• Use GPUs with PaRSEC

• Distributed-memory architecture

? Thanks for the welcome at ICL!
Questions?

	Context of the work
	The multifrontal QR method
	The multifrontal QR method

	The Multifrontal QR method in qr_mumps
	STF vs PTG models
	PaRSEC multifrontal QR
	Experimental results
	Conclusions and future work

