Accelerating computation of eigenvectors

Mark Gates, Azzam Haidar, Khairul Kabir March 21, 2014

Eigenvalue Applications

- Air flow over bridges
- Airplane design
- Chemical engineering reaction-diffusion
- Molecular resonance in electro-magnetic fields
- Integrated circuit design

1940 Tacoma Narrows bridge collapse in 40 mph wind

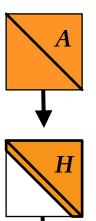
Video: Barney Elliott

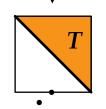
Nonsymmetric eigenvalues

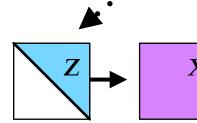
• A is $n \times n$, nonsymmetric

$$Ax = \lambda x$$

- Three phases:
 - Hessenberg reduction, $H = Q_1^T A Q_1$
 - QR iteration to triangular form, $T = Q_2^T H Q_2$
 - Compute eigenvectors \boldsymbol{Z} of \boldsymbol{T} and back-transform to eigenvectors \boldsymbol{X} of \boldsymbol{A}







Comparison with symmetric

Symmetric (Hermitian)

Condensed form

tridiagonal, O(n) entries

Final form

diagonal, Λ

Eigenvectors of Λ , T

Back-transform

Eigenvalues

trivial – identity

 $X = Q_1Q_2$

real, even if *A* is complex

Nonsymmetric

Hessenberg, $O(n^2)$ entries

triangular, T

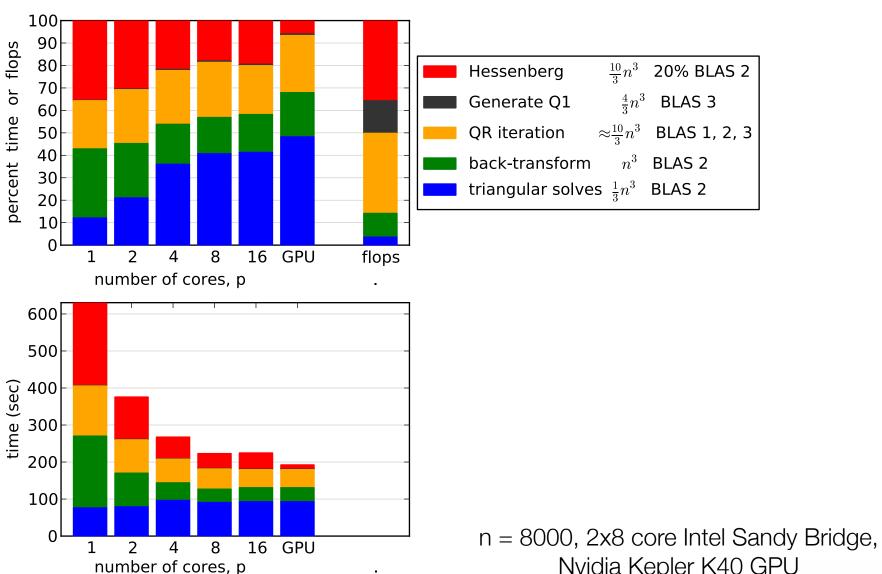
triangular solves -Z

$$X = (Q_1Q_2)Z$$

complex, even if A is real

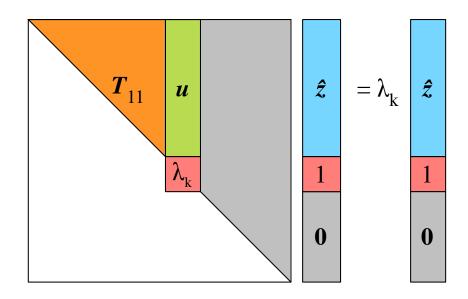
LAPACK Performance

BLAS 2 operations dominate overall cost

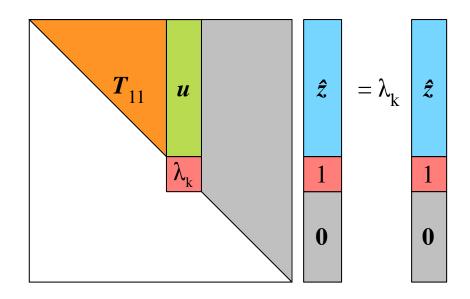


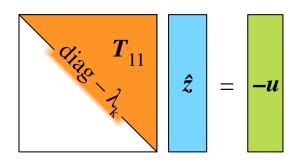
Nvidia Kepler K40 GPU

- Eigenvalues λ_k are diagonal elements of T
- Solving $Tz = \lambda_k z$ yields $(T_{11} \lambda_k I) \hat{z} = -u$

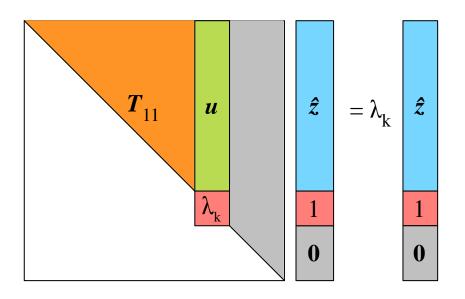


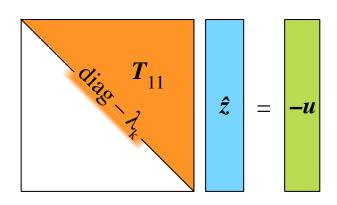
- Eigenvalues λ_k are diagonal elements of T
- Solving $Tz = \lambda_k z$ yields $(T_{11} \lambda_k I) \hat{z} = -u$



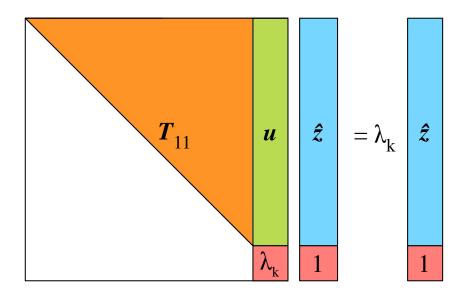


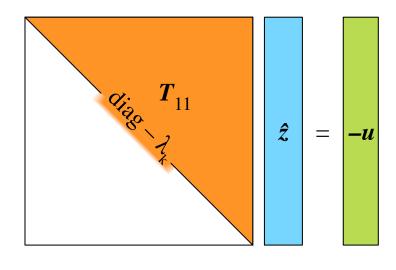
- Eigenvalues λ_k are diagonal elements of T
- Solving $Tz = \lambda_k z$ yields $(T_{11} \lambda_k I) \hat{z} = -u$





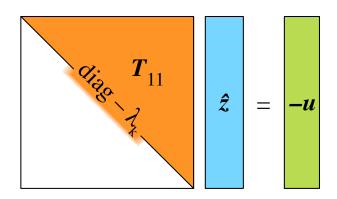
- Eigenvalues λ_k are diagonal elements of T
- Solving $Tz = \lambda_k z$ yields $(T_{11} \lambda_k I) \hat{z} = -u$





Triangular solve

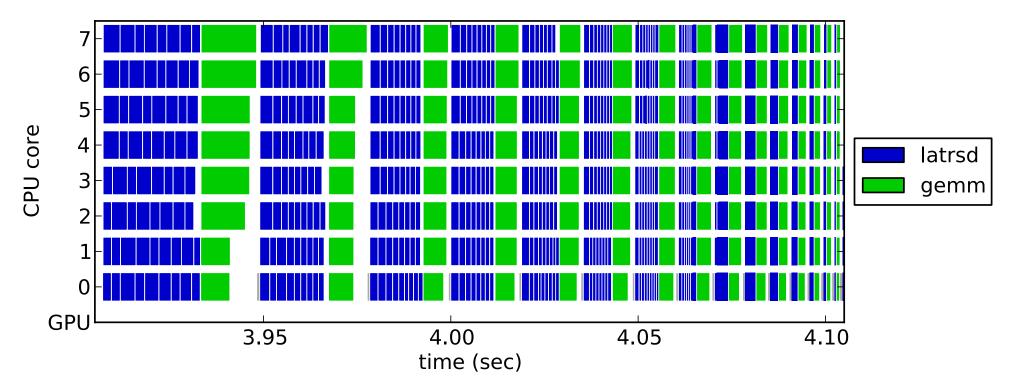
- Safe solver latrs instead of trsv
 - Handles singular and ill-conditioned *T* matrix



- Computes column-by-column → single threaded
- Previously, LAPACK modified T for each latrs
- New routine **latrsd** subtracts λ_k from diagonal, without modifying T
- Thread pool executes multiple solves in parallel

Trace

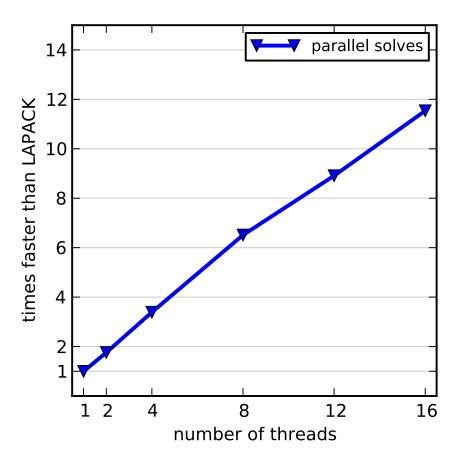
- **latrsd** decreases in time as $k \to 0$
- Thread pool maintains load balance



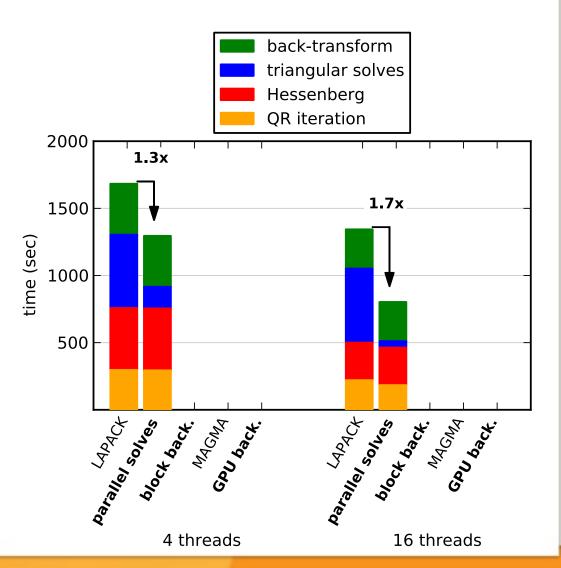
n = 2000, $n_b = 64$ on 8 core Intel Sandy Bridge

Performance

Good parallel scaling



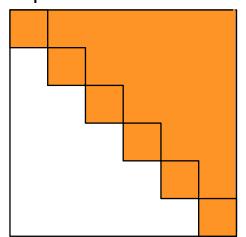
n = 16000, 2x8 core Intel Sandy Bridge



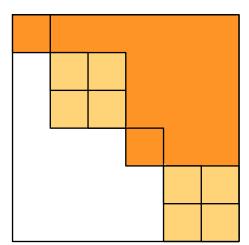
Complications for real

- Eigenvalues can be complex, even if A is real
- 2x2 diagonal blocks for conjugate eigenvalue pairs

Complex Schur form T



Real Schur form T

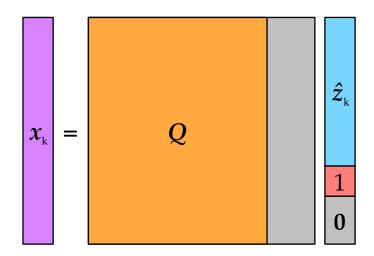


- Needs specialized quasi-triangular solver
- Factor quasi-triangular solver dlaqtrsd out of dtrevc

Back-transform

Original, unblocked

• Each vector, $x_k = Qz_k$

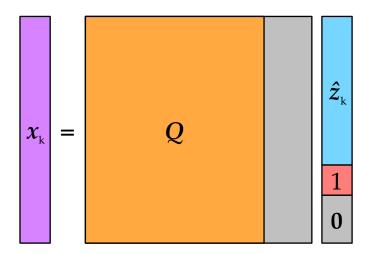


• n **gemv**, size $n \times k$ for k = n, n - 1, ..., 1

Back-transform

Original, unblocked

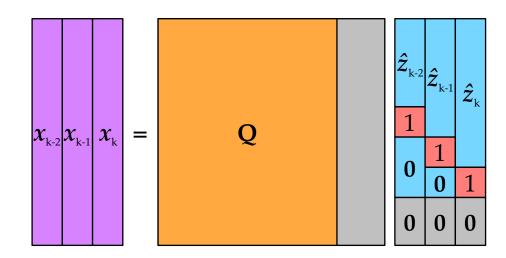
• Each vector, $x_k = Qz_k$



• n **gemv**, size $n \times k$ for k = n, n - 1, ..., 1

New, blocked

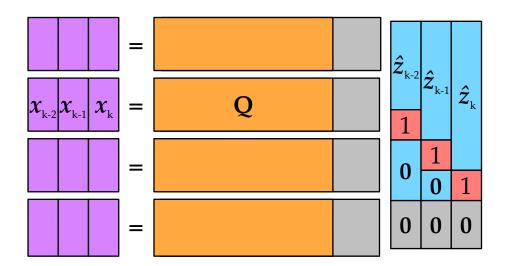
• Block n_b vectors, $X_k = QZ_k$



• $\frac{n}{n_b}$ **gemm**, size $n \times k \times n_b$ for $k = n, n - n_b, ...$

Parallel GEMM

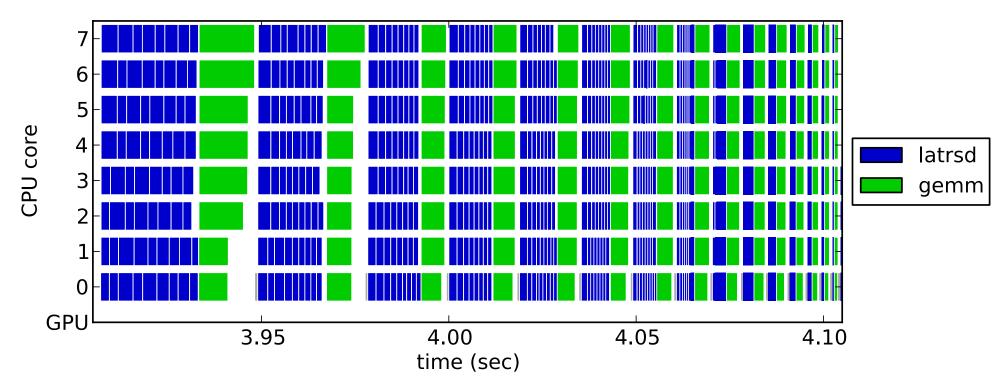
- Split Q by block-rows
- Each block-row is single-threaded gemm task
- Use same thread pool as triangular solves



Trace

(same as before)

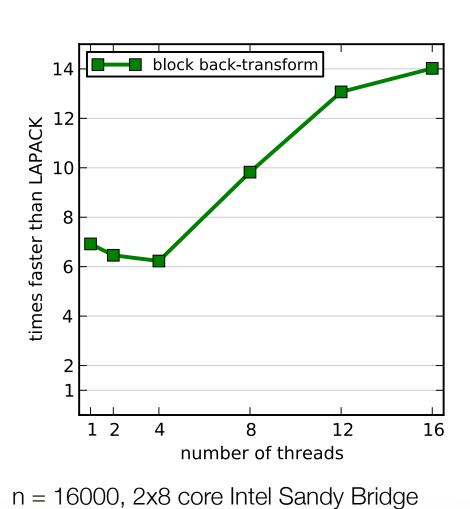
• **gemm** decreases in time as $k \to 0$

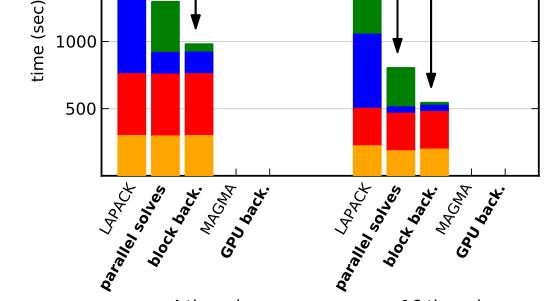


n = 2000, $n_b = 64$ on 8 core Intel Sandy Bridge

Performance

Improvement for all number of threads





1.7x

4 threads

1.3x

back-transform triangular solves

Hessenberg

QR iteration

1.7x _ 2.4x

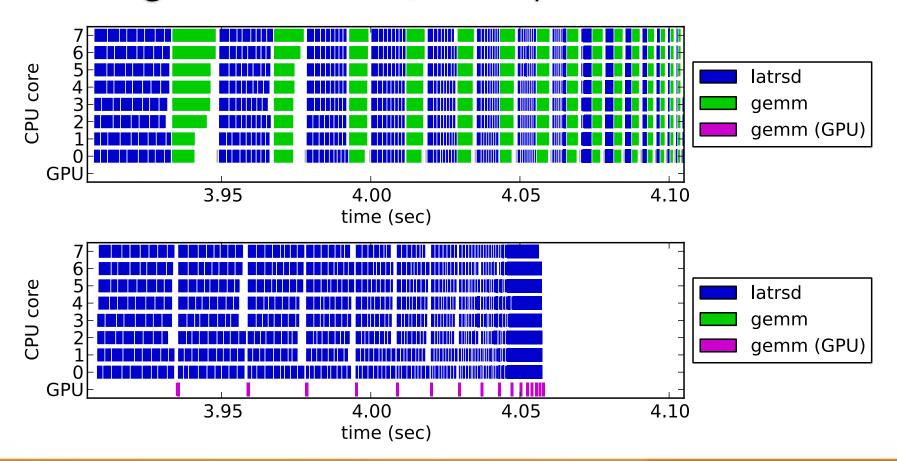
16 threads

2000

1500

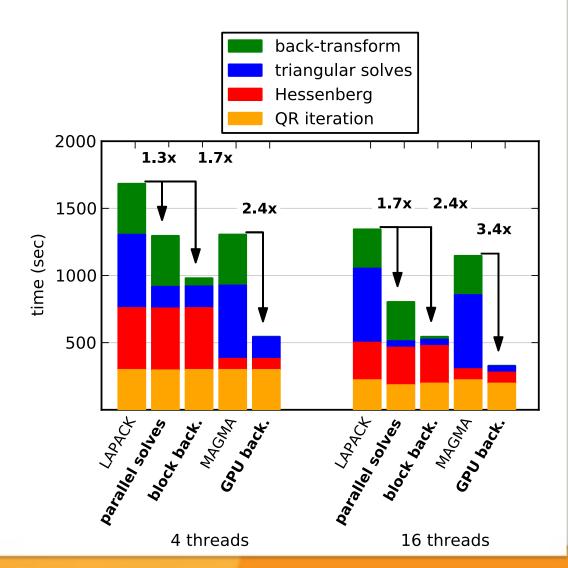
GPU acceleration

- Next latrsd does not depend on gemm results
- Perform gemm on GPU; overlap with latrsd on CPU



Performance

- Compare to MAGMA Hessenberg on GPU
- Back-transformation time completely hidden



n = 16000, 2x8 core Intel Sandy Bridge, NVIDIA Kepler K40 GPU

Performance

- Compare to MAGMA Hessenberg on GPU
- Back-transformation time completely hidden
- Overall improvement compared to LAPACK

1.7x 1.7x 2.4x 1500 2.4x 3.4x time (sec) 1000 500 MAGNA GOL Darallel Solves Darallel Solves block back. MAGNA

4 threads

3.1x

back-transform

Hessenberg

QR iteration

triangular solves

n = 16000, 2x8 core Intel Sandy Bridge, NVIDIA Kepler K40 GPU

2000

1.3x

16 threads

4.0x

Xeon Phi acceleration

- Difficult to parallelize latrsd with CUDA or OpenCL
 - Especially dlaqtrsd with 2x2 diagonal blocks
- Intel Xeon Phi offers easier programming model
- Perform both latrsd/laqtrsd and gemm on Xeon Phi
- Ongoing work

