On the Combination of Silent Error Detection and Checkpointing

Guillaume Aupy, Anne Benoit, Thomas Hérault, Yves Robert, Frédéric Vivien & Dounia Zaidouni

ICL Friday Lunch - September 6, 2013

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource:

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

What about the retreat?

What about the retreat?

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

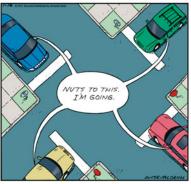
k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion,

What about the retreat?

REAL LIFE ADVENTURES

BY GARY WISE & LANCE ALDRICH



Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

1 Introduction

- Optimal Checkpointing strategy Exponential distribution Arbitrary distribution
- 3 Limited resources
- 4 Incorporating detection k checkpoints for 1 verification k verifications for 1 checkpoint
- 5 Conclusion, future work

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

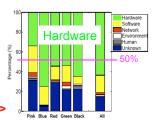
k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

Error sources (courtesy Franck Cappello)

Sources of failures

- Analysis of error and failure logs
- In 2005 (Ph. D. of CHARNG-DA LU): "Software halts account for the most number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware problems, albeit rarer, need 6.3-100.7 hours to solve."
- · In 2007 (Garth Gibson, ICPP Keynote):



In 2008 (Oliner and J. Stearley, DSN Conf.):

	Raw		Filtered		
	Type	Count	%	Count	%
<	Hardware	174,586,516	98.04	1.999	18.78
	Software	144,899	0.08	6,814	64.01
	Indeterminate	3,350,044	1.88	1,832	17.21

Relative frequency of root cause by system type.

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. Hardware errors. Disks. processors. memory, network

Conclusion: Both Hardware and Software failures have to be considered

Optimal Checkpointing

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Restrict to silent errors
- This includes some software faults, some hardware errors (soft errors in L1 cache), double bit flip
- Silent error detected when corrupt data is activated

A few definitions

Y. Robert

Introduction

Optimal Checkpointing

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Restrict to silent errors
- This includes some software faults, some hardware errors (soft errors in L1 cache), double bit flip
- Silent error detected when corrupt data is activated
- Silent errors are the black swans of errors (Marc Snir)

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

- Introduction
- Optimal Checkpointing strategy Exponential distribution Arbitrary distribution
- 3 Limited resources
- 4 Incorporating detection k checkpoints for 1 verification k verifications for 1 checkpoint
- 5 Conclusion, future work

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

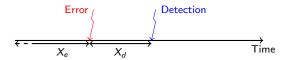


Figure: Error and detection latency.

- X_e inter arrival time between errors; mean time μ_e
- X_d error detection time; mean time μ_d
- Assume X_d and X_e independent

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

• *C* checkpointing time

- R recovery time
- W total work
- w some piece of work

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary

distribution

Limited resource

Incorporating detection

 $\begin{array}{c} k \text{ checkpoints} \\ \text{for } 1 \text{ verification} \\ k \text{ verifications} \\ \text{for } 1 \text{ checkpoint} \end{array}$

Conclusion, future work

When X_e follows an Exponential law of parameter $\lambda_e=\frac{1}{\mu_e}$, in order to execute a total work of w+C, we need:

. .

. . . .

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C) + (1-e^{-\lambda_e(w+C)}) (\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))$$

Optimal Checkpointing

strategy Exponential

Arbitrary

Limited

resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w+C, we need:

Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_e(w+C)} (w+C) + \frac{(1-e^{-\lambda_e(w+C)})}{(\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))}$$

• Probability of error during w + C

Optimal Checkpointing

Exponential distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

When X_e follows an Exponential law of parameter $\lambda_e = \frac{1}{\mu_e}$, in order to execute a total work of w + C, we need:

Probability of execution without error

$$\mathbb{E}(T(w)) = e^{-\lambda_{e}(w+C)} (w+C) + \frac{(1-e^{-\lambda_{e}(w+C)})}{(\mathbb{E}(T_{lost}) + \mathbb{E}(X_{d}) + \mathbb{E}(T_{rec}) + \mathbb{E}(T(w)))}$$

- Probability of error during w + C
- Execution time with an error

Y. Robert

Introduction

Checkpointing

strategy Exponential distribution

Arbitrary distribution

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion. future work Let us focus on the time lost due to an error:

$$\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$$

Exponential distribution Arbitrary

Arbitrary distribution

Limited resource

Incorporatin detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Let us focus on the time lost due to an error:

$$\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$$

This is the time elapsed between the completion of the last checkpoint and the error

$$\mathbb{E}(T_{lost}) = \int_0^\infty x \mathbb{P}(X = x | X < w + C) dx$$

$$= \frac{1}{\mathbb{P}(X < w + C)} \int_0^{w + C} x \lambda_e e^{-\lambda_e x} dx$$

$$= \frac{1}{\lambda_e} - \frac{w + C}{e^{\lambda_e (w + C)} - 1}$$

Y. Robert

Introduction

Checkpointing strategy

Exponential distribution

Arbitrary distribution

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion. future work Let us focus on the time lost due to an error:

$$\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$$

This is the time needed for error detection, $\mathbb{E}(X_d) = \mu_d$

Conclusion,

Let us focus on the time lost due to an error:

$$\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$$

This is the time to recover from the error (there can be a fault durnig recovery):

$$egin{aligned} \mathbb{E}(T_{rec}) &= e^{-\lambda_e R} R \ &+ (1 - e^{-\lambda_e R}) (\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})) \end{aligned}$$

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Let us focus on the time lost due to an error:

$$\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$$

This is the time to recover from the error (there can be a fault durnig recovery):

$$egin{aligned} \mathbb{E}(T_{rec}) &= e^{-\lambda_e R} R \ &+ (1 - e^{-\lambda_e R}) (\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})) \end{aligned}$$

Similarly to $\mathbb{E}(T_{lost})$, we have: $\mathbb{E}(R_{lost}) = \frac{1}{\lambda_e} - \frac{R}{e^{\lambda_e R} - 1}$.

Conclusion, future work

Let us focus on the time lost due to an error:

$$\mathbb{E}(T_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})$$

This is the time to recover from the error (there can be a fault durnig recovery):

$$\begin{split} \mathbb{E}(T_{rec}) &= e^{-\lambda_e R} R \\ &+ (1 - e^{-\lambda_e R}) (\mathbb{E}(R_{lost}) + \mathbb{E}(X_d) + \mathbb{E}(T_{rec})) \end{split}$$

Similarly to $\mathbb{E}(T_{lost})$, we have: $\mathbb{E}(R_{lost}) = \frac{1}{\lambda_e} - \frac{R}{e^{\lambda_e R} - 1}$.

So finally,
$$\mathbb{E}(T_{rec}) = (e^{\lambda_e R} - 1)(\mu_e + \mu_d)$$

Y. Robert

Introduction

Ontimal

Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited

Incorporating

detection

k checkpoints
for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

At the end of the day,

$$\mathbb{E}(T(w)) = e^{\lambda_e R} \left(\mu_e + \mu_d \right) \left(e^{\lambda_e (w + C)} - 1 \right)$$

This is the exact solution!

Optimal

Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Using *n* chunks of size w_i (with $\sum_{i=1}^n w_i = W$), we have:

$$\mathbb{E}(T(W)) = K \sum_{i=1}^{n} (e^{\lambda_e(w_i+C)} - 1)$$

with K constant.

Independent of $\mu_d!$

Minimum when all the w_i 's are equal to w = W/n.

Ontimal

Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Using *n* chunks of size w_i (with $\sum_{i=1}^n w_i = W$), we have:

$$\mathbb{E}(T(W)) = K \sum_{i=1}^n (e^{\lambda_e(w_i+C)} - 1)$$

with K constant.

Independent of $\mu_d!$

Minimum when all the w_i 's are equal to w=W/n. Optimal n can be found by differentiation A good approximation is $w=\sqrt{2\mu_eC}$ (Young's formula)

Arbitrary distributions

Y. Robert

Introduction

Optimal Checkpointing strategy

distribution

Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Extend results when $X_{\rm e}$ follows an arbitrary distribution of mean $\mu_{\rm e}$

Y. Robert

Introduction

Optimal

Checkpointing strategy

distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Waste: fraction of time not spent for useful computations

Waste

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponentia distribution

Arbitrary distribution

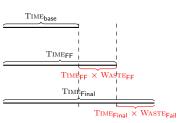
Limited resource

Incorporatin detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

- $\bullet \ \mathrm{TIME}_{\text{base}} :$ application base time
- TIMEFF: with periodic checkpoints but failure-free
- TIMEFinal: expectation of time with failures



$$(1 - WASTE_{FF})TIME_{FF} = TIME_{base}$$

$$(1 - \text{Waste}_{\text{Fail}})\text{Time}_{\text{Final}} = \text{Time}_{\text{FF}}$$

$$Waste = \frac{Time_{Final} - Time_{base}}{Time_{Final}}$$

Waste =
$$1 - (1 - \text{Waste}_{FF})(1 - \text{Waste}_{Fail})$$

Optimal

Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

We can show that

$$ext{WASTE}_{\mathsf{FF}} = rac{C}{T}$$
 $ext{WASTE}_{\mathsf{Fail}} = rac{rac{T}{2} + R + \mu_d}{\mu_e}$

Optimal

Checkpointing strategy

Exponential distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

We can show that

$$WASTE_{\mathsf{FF}} = \frac{C}{T}$$

$$WASTE_{\mathsf{Fail}} = \frac{\frac{T}{2} + R + \mu_d}{\mu_e}$$

Only valid if
$$\frac{T}{2} + R + \mu_d \ll \mu_e$$
.

Optimal

Checkpointing strategy

Exponentia distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

We can show that

$$WASTE_{\mathsf{FF}} = \frac{C}{T}$$

$$WASTE_{\mathsf{Fail}} = \frac{\frac{T}{2} + R + \mu_d}{\mu_e}$$

Only valid if
$$\frac{T}{2} + R + \mu_d \ll \mu_e$$
.

Then the waste is minimized for

$$T_{\rm opt} = \sqrt{2(\mu_e - (R + \mu_d))C)} \approx \sqrt{2\mu_e C}$$

Optimal Checkpointing

strategy Exponential distribution

Arbitrary distribution

Limited

Incorporating detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

Theorem

- Best period is $T_{opt} \approx \sqrt{2\mu_e C}$
- Independent of X_d

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponentia

Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Analytical optimal solutions, valid for arbitrary distributions, without any knowledge on X_d except its mean

However, if X_d can be arbitrary large:

- Do not know how far to roll back in time
- Need to store all checkpoints taken during execution

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

1 Introduction

- Optimal Checkpointing strategy Exponential distribution Arbitrary distribution
- 3 Limited resources
- 4 Incorporating detection k checkpoints for 1 verification k verifications for 1 checkpoint
- **5** Conclusion, future work

The case with limited resources

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Assume that we can only save the last k checkpoints

Definition (Critical failure)

Error detected when all checkpoints contain corrupted data. Happens with probability \mathbb{P}_{risk} during whole execution.

Optimal Checkpointing

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

 $\mathbb{P}_{\mathsf{risk}}$ decreases when T increases(when X_d is fixed). Hence, $\mathbb{P}_{\mathsf{risk}} \leq \varepsilon$ leads to a lower bound T_{min} on T

We have derived an analytical form for \mathbb{P}_{risk} when X_d follows an Exponential law. We use it as a good(?) approximation for arbitrary laws

Y. Robert

Introduction

Optimal Checkpointin strategy

Exponential distribution Arbitrary distribution

Limited resources

Incorporatin detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work

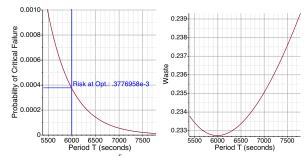


Figure : k=3, $\lambda_e=\frac{10^5}{100y}, \lambda_d=30\lambda_e, w=10d, C=R=600s$

$$T_{\rm opt} pprox 100 \emph{min}, \ \mathbb{P}_{\rm risk}(T_{\rm opt}) pprox 38 \cdot 10^{-5}, \ {
m for a waste of } 23.45\%$$

To reduce \mathbb{P}_{risk} to 10^{-4} , a T_{min} of 8000 seconds is sufficient, increasing the waste by only 0.6%. In this case, the benefit of fixing the period to $max(T_{opt}, T_{min})$ is obvious

19.0

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion,

More optimistic technologic scenario (smaller C and R):

 $T_{\rm opt}$ is largely reduced (down to less than 35 minutes), but $\mathbb{P}_{\rm risk}(T_{\rm opt})$ climbs to 1/2, an unacceptable value.

To reduce $\mathbb{P}_{\rm risk}$ to 10^{-4} , it becomes necessary to consider a T_{min} of 6650 seconds. The waste increases to 15%, significantly higher than the optimal one, which is below 10%

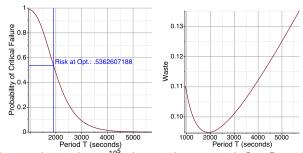


Figure : k = 3, $\lambda_e = \frac{10^5}{100y}$, $\lambda_d = 30\lambda_e$, w = 10d, C = R = 60s.

19.0

Y. Robert

Introduction

Optimal Checkpointing strategy

distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion. future work

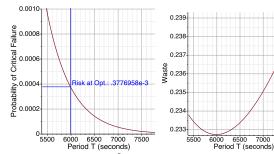
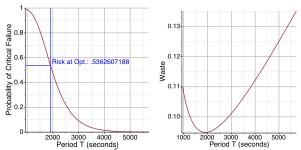


Figure: k = 3, $\lambda_e = \frac{10^5}{100v}$, $\lambda_d = 30\lambda_e$, w = 10d, C = R = 600s



 $\frac{10^5}{100v}$, $\lambda_d = 30\lambda_e$, w = 10d, C = R = 60s. Figure : k = 3, λ_e

6500 7000 7500

Introduction

Optimal Checkpointing

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion,

It is not clear how can one detect when the error occurred (hence to identify the last valid checkpoint)

Need a verification mechanism to check the correctness of the checkpoints. This has a cost!

Possible solution: add verifications; use a periodic mechanism to verify that there were no silent errors in previous computations.

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

1 Introduction

- Optimal Checkpointing strategy Exponential distribution Arbitrary distribution
- 3 Limited resources
- 4 Incorporating detection
 k checkpoints for 1 verification
 k verifications for 1 checkpoint
- **5** Conclusion, future work

Introduction

Checkpointing strategy

distribution Arbitrary distribution

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion. future work Assume there are no errors during checkpoints (less error sources when doing I/O)

Simple approach: Perform a verification before each checkpoint to eliminate risk of corrupted data.

Introduction

Checkpointing strategy

distribution Arbitrary distribution

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion. future work

When V is large compared to w, $WASTE_{FF}$ is large, can we improve that?

Y. Robert

Introduction

Checkpointing strategy

distribution Arbitrary distribution

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

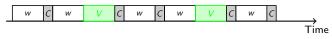
Conclusion. future work

Motivational Examples

Wasteff = $\frac{V+C}{w+V+C}$, Wastefail = $\frac{w}{u_0}$

When V is large compared to w, $WASTE_{FF}$ is large, can we improve that?

Is this better?



$$R=0$$
:

Waste_{ff} =
$$\frac{V+C}{w+V+C}$$
, Waste_{fail} = $\frac{w}{\mu_e}$

Introduction

Optimal Checkpointing strategy

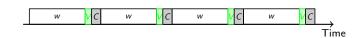
Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpointsfor 1 verificationk verificationsfor 1 checkpoint

Conclusion, future work



When V is small in front of w, $WASTE_{Fail}$ is large, can we improve that?

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

Motivational Examples

R = 0:WASTEFF = $\frac{V+C}{w+V+C}$, WASTEFail = $\frac{w}{u_0}$

When V is small in front of w, $WASTE_{Fail}$ is large, can we improve that?

Is this better?

23.0

Y. Robert

k checkpoints for 1 verification

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating

detection k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion, future work

V C w C w C w C w

Introduction

Optimal Checkpointing

strategy
Exponential distribution
Arbitrary distribution

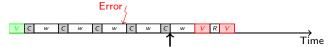
Limited resource

Incorporating

detection k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion, future work



V C w C w C w C w

Introduction

Optimal Checkpointing

strategy
Exponential distribution
Arbitrary distribution

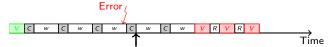
Limited resource

Incorporating

detection k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion, future work



V C w C w C w C w C w

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating

detection k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Introduction

Optimal Checkpointing

strategy
Exponential distribution
Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification

for 1 checkpoint

Conclusion, future work

Waste_{ff} =
$$\frac{kC + V}{k(w + C) + V}$$
Waste_{fail} =
$$\frac{\frac{1}{k} \sum_{i=1}^{k} T_{lost}(i)}{\mu_{e}}$$

where $T_{lost}(i)$ is the time lost if error occurred in i^{th} segment

V C w C w C w C w C w V C

Introduction

Checkpointing

strategy distribution Arbitrary distribution

Incorporating

detection k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion. future work

Error С С Time

$$T_{lost}(k) = R + V + w + V$$

strategy
Exponential distribution
Arbitrary distribution

Limited

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

k checkpoints for 1 verification

$$T_{lost}(k) = R + V + w + V$$

strategy Exponential distribution

distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification

for 1 checkpoint

Conclusion,

future work

k checkpoints for 1 verification

$$T_{lost}(k) = R + V + w + V$$

strategy
Exponential distribution
Arbitrary distribution

Limited

Incorporating detection

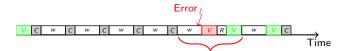
k checkpoints for 1 verification k verifications

for 1 checkpoint

Conclusion,

future work

k checkpoints for 1 verification



$$T_{lost}(k) = R + V + w + V$$

Introduction

Optimal Checkpointing

strategy
Exponential distribution
Arbitrary distribution

Limited

Incorporating

detection k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion, future work

$$T_{lost}(k) = R + V + w + V$$

 $T_{lost}(i) = (k - i + 1)(R + V + w) + (k - i)C + V$

V C W C W C W C W V C

Y. Robert

Introduction

Checkpointing

strategy distribution Arbitrary distribution

detection

k checkpoints

for 1 verification k verifications for 1 checkpoint

Conclusion. future work

Error R С С

$$T_{lost}(k) = R + V + w + V$$

 $T_{lost}(i) = (k - i + 1)(R + V + w) + (k - i)C + V$
 $T_{lost}(1) = k(R + V + w) - V + (k - 1)C + V$

V C w C w C w C w C w V C

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited

Incorporatin

detection k checkpoints

for 1 verification

k verifications

for 1 checkpoint

Conclusion, future work

V C w C w C w C w V R V w V C

$$T_{lost}(k) = R + V + w + V$$

 $T_{lost}(i) = (k - i + 1)(R + V + w) + (k - i)C + V$
 $T_{lost}(1) = k(R + V + w) - V + (k - 1)C + V$

And this leads us to optimal solution . . .

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification

k verifications for 1 checkpoint

Conclusion, future work

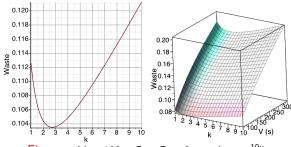


Figure :
$$V = 100s$$
, $C = R = 6s$, and $\mu = \frac{10y}{10^5}$.

$$C=6s\ll V$$
.

When V=100 seconds, a verification is done only every k=3 checkpoints optimally $\Rightarrow 10\%$ improvement compared to k=1.

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resources

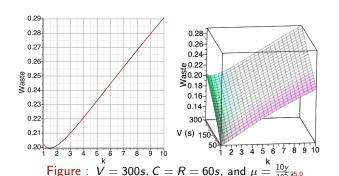
Incorporating detection

k checkpoints

k verifications for 1 checkpoint

Conclusion, future work

C=60s is not negligible anymore in front of V ($V\approx 5C$). The waste is dominated by the cost of verification, and little improvement can be achieved by taking the optimal value for k.



Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints
for 1 verification
k verifications
for 1 checkpoint

Conclusion, future work

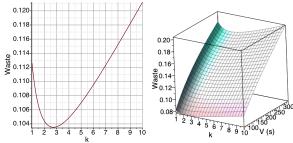


Figure : V = 100s, C = R = 6s, and $\mu = \frac{10y}{10^5}$.

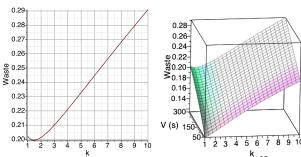


Figure : V = 300s, C = R = 60s, and $\mu = \frac{10y}{10^5 \frac{250}{6}}$

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

Very similarly, we obtain:

Waste_{ff} =
$$\frac{kV + C}{k(w + V) + C}$$
Waste_{fail} =
$$\frac{\frac{1}{k} \sum_{i=1}^{k} T_{lost}(i)}{\mu_{e}}$$

$$T_{lost}(i) = R + i(V + w)$$

where $T_{lost}(i)$ is the time lost if error occurred in i^{th} segment.

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

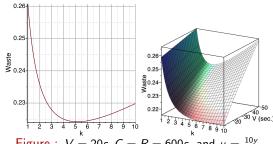


Figure : V = 20s, C = R = 600s, and $\mu = \frac{10y}{10^5}$.

$$V=20s\ll C$$
.

When C=600 seconds, 5 verifications are done for every check-point optimally \Rightarrow 14% improvement compared to k=1.

Optimal

Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resources

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

 $V=2s\ll C$.

When C = 60 seconds, 5 verifications are done every checkpoint optimally $\Rightarrow 18\%$ improvement compared to k = 1.

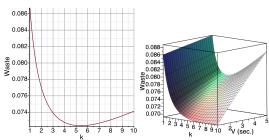


Figure : V = 2s, C = R = 60s, and $\mu = \frac{10y}{10^5}$.

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

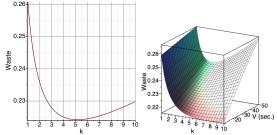


Figure : V = 20s, C = R = 600s, and $\mu = \frac{10y}{10^5}$.

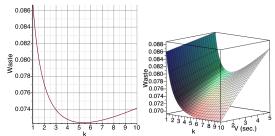


Figure : V = 2s, C = R = 60s, and $\mu = \frac{10y}{10^5}$.

Y. Robert

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporatin detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

1 Introduction

- Optimal Checkpointing strategy Exponential distribution Arbitrary distribution
 - 3 Limited resources
 - 4 Incorporating detection
 k checkpoints for 1 verification
 k verifications for 1 checkpoint
 - 6 Conclusion, future work

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

- Study of optimal checkpointing strategy in presence of silent errors
- Analytical solution for the different probability distributions
- Study in presence of verification mechanisms

Introduction

Optimal Checkpointing strategy

Exponential distribution Arbitrary distribution

Limited resource

Incorporating detection

k checkpoints for 1 verification k verifications for 1 checkpoint

Conclusion, future work

- Without verification: When we keep k checkpoints in memory, we do not have to keep the k last checkpoints: new strategies (Fibonacci, binary, ...)?
- With verification: We focused on an integer number of checkpoints per verification (or conversely): extensions?