

Greedy Trees for MPI Reductions

Julien Langou University of Colorado Denver MARCH 28, 2013

Table of Contents

Introduction and Model

Unidirectional

Nonuniform Segmentation

Bidirectional

Conclusion

Langou University of Colorado Denver Greedy trees,

Table of Contents

Introduction and Model

Nonuniform Segmentation

What is a reduction?

- We will consider a set of p processors with distributed memory and each processor has a message of size m.
- A reduction combines the messages entry-wise, and returns the value on one specified processor.
- Example: p = 3, m = 5

0	1	2		0		1		2		0
2	1	1		2		1		1		4
4	2	3		4		2		3		9
6	3	5	\rightarrow	6	+*	3	+*	5	\rightarrow	14
8	4	7		8		4		7		19
10	5	9		10		5		9		24

^{*} Can be any associative operation.

Communication Model

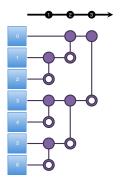
- Unidirectional system At any given time a processor is allowed to send a message to another processor or receive a message from another processor, but not both.
- Communication time between two processors is given by the linear model, $\alpha + \beta m$, where α is the latency (start up time) and β is the inverse bandwidth.
- The time for the computation is given γm .
- Cannot overlap communication and computation.
- In practice we have the relationship, $\alpha >> \beta > \gamma$.
- The message m can be split into q segments of size s_i .
- Uniform segmentation: $s_i = s$ for all i.

Table of Contents

Unidirectional

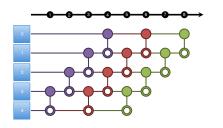
Nonuniform Segmentation

Binomial Tree



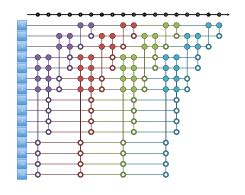
- Best for small messages, $\alpha >> \beta m$.
- Minimizes the number of communications started.
- No segmentation. Only increases latency.
- $time = \lceil \log_2 p \rceil (\alpha + \beta m + \gamma m)$

Pipeline Tree



- Best for long messages, $\alpha << \beta m$.
- Poor startup, but optimal overhead for trailing segments.
- time = $((p-1)+2(q-1))(\alpha+\beta s+\gamma s)$

Binary Tree



- At each step, two different processors send to the same receiving processor.
- An iteration is therefore twice as long as compared to the other trees.
- Good for medium sized messages, α ≈ βm.
- $time = (2(\lceil \log_2 p + 1 \rceil 1) + 4(q 1))(\alpha + \beta s + \gamma s)$

Time Complexity for Binomial, Pipeline, and Binary

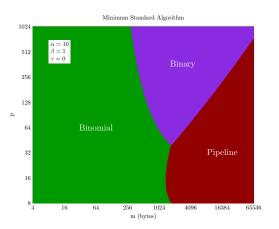
Binomial	Time	$\lceil \log_2 p \rceil (\alpha + \beta m + \gamma m)$				
	Time	$(p-1)(\alpha+\beta s+\gamma s)+2(q-1)(\alpha+\beta s+\gamma s)$				
Pipeline	$\left(rac{2mlpha}{(p-3)(eta+\gamma)} ight)^{1/2}$					
	T _{opt}	$\left[\left((\rho - 3)\alpha \right)^{1/2} + \left(2m(\beta + \gamma) \right)^{1/2} \right]^2$				
	Time	$2(\lceil log_2(p+1)\rceil - 1)(\alpha + \beta s + \gamma s) + 4(q-1)(\alpha + \beta s + \gamma s)$				
Binary	Sopt	$\left(rac{2mlpha}{({\sf N}-3)(eta+\gamma)} ight)^{1/2}$				
	T _{opt}	$2\left[\left((N-3)\alpha\right)^{1/2}+\left(2m(\beta+\gamma)\right)^{1/2}\right]^{2}$				

 $N = \lceil \log_2(p+1) \rceil$, s_{opt} is the optimal equi-segment size, and T_{opt} is the time for the algorithm at s_{opt} . Formulae are valid for p > 3.

Lower Bounds for each term in communication time

	Latency	Bandwidth	Computation
Reduce	$\lceil \log_2 p \rceil \alpha$	2 m eta	$\frac{p-1}{p}m\gamma$
Binomial	$\lceil \log_2 p \rceil \alpha$	$\lceil \log_2 p \rceil m \beta$	$\lceil \log_2 p \rceil m \gamma$
Pipeline	$(p-1)\alpha$	$(p-3+2m)\beta$	$(p + 2m - 3)\gamma$
Binary	$2(N-1)\alpha$	$2(N-3+2m)\beta$	$2(N-3+2m)\gamma$

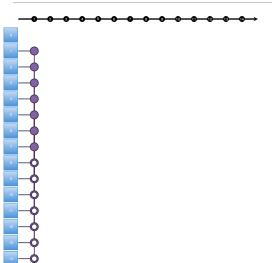
$${}^*N = \lceil \log_2(p+1) \rceil$$



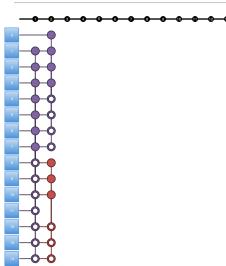
Regions where binomial or pipeline or binary is better in term of the number of processors (p) and the message size (m). For each algorithm, each p and each m, the optimal segment size is used. The machine parameters are $\alpha = 10, \beta = 1, \gamma = 0$.

13 of 33

Greedy Tree - Unidirectional, No Computation

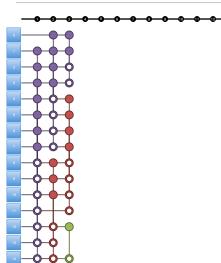


- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme. [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).



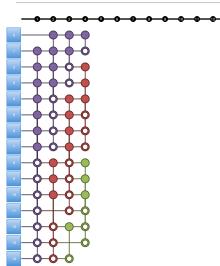
- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme. [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

13 of 33



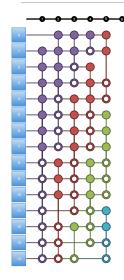
- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme. [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

Greedy trees



- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

Greedy trees

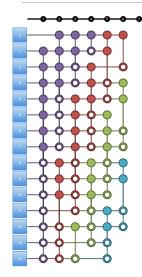


- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

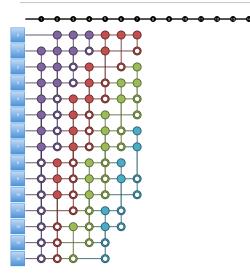
Langou

13 of 33

Greedy Tree - Unidirectional, No Computation

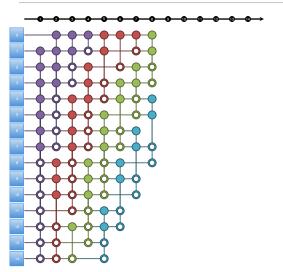


- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).



- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

Greedy trees

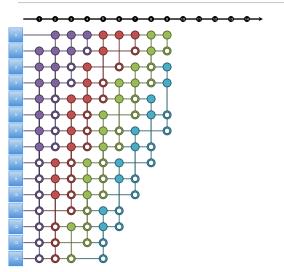


- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

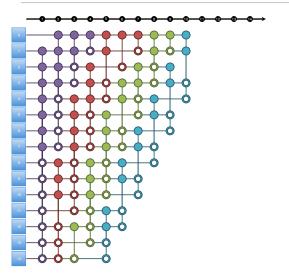
Greedy trees

13 of 33

Greedy Tree - Unidirectional, No Computation

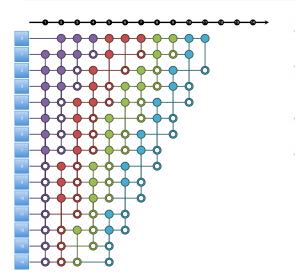


- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

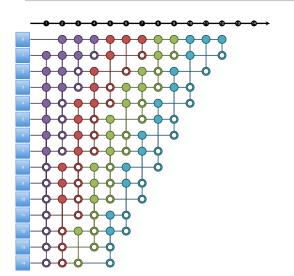


- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

Greedy trees



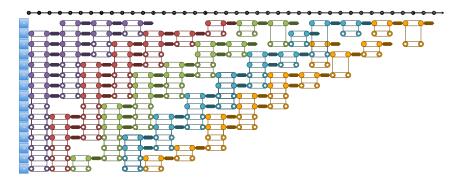
- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).



- Optimal for uniform segmentation.
- Motivated by greedy QR factorization scheme.
 [Cosnard and Robert '86]
- Different tree for each segment.
- We assume the operation is commutative (and associative as well, of course).

14 of 33

Greedy Tree - Unidirectional with Computation



15 processors, 5 equi-segments, $t_{comm} = 2$ and $t_{comp} = 1$.

Filled in circles represent receiving processors, open circles represent sending processors, and hexagons represent computation.

Langou University of Colorado Denver Greedy trees

15 of 33

Theoretical Results

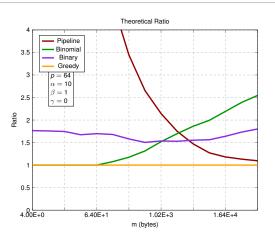
Theorem

In an unidirectional system assuming that segments are reduced in order the time complexity of the greedy algorithm is no worse than any reduction algorithm.

- Segments do not have to be equal size.
- Reducing segments in order allows for less work space (buffer size is 2 × segment size), also this will work for non-commutative operations.
- Each algorithm is tuned for optimal uniform segmentation.
- For given parameters, $p, m, \alpha, \beta, \gamma$, which algorithm is the best?

Langou University of Colorado Denver Greedy trees

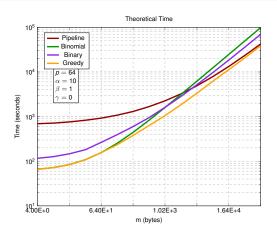
Theoretical Results (ratio)



- Each algorithm is tuned for optimal uniform segmentation.
- 50% speed up for "medium sized" messages.

16 of 33

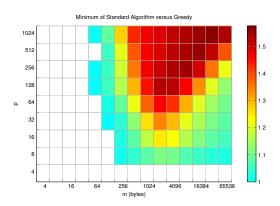
Theoretical Results (time)



- Each algorithm is tuned for optimal uniform segmentation.
- 50% speed up for "medium sized" messages.

17 of 33

Theoretical Results (ratio versus best of "standard algorithms")



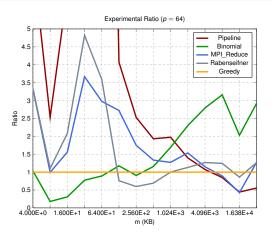
- Each algorithm is tuned for optimal uniform segmentation.
- 50% speed up for "medium sized" messages.

C code for the unidirectional greedy reduction algorithm.

```
int global_s;
int Reduce greedy/ void *sendbuf notype, void *recybuf notype, int m.
        MPI Datatype mpi datatype, MPI Op mpi op, int root, MPI Comm mpi comm) (
        int pool size:
        int my rank:
        int j, i, q, z, s2, s3,qstart, qend, snext; int s=qlobal s;
        MDT Status status
        int *tempbuf, *tempbuf2;
        int *sendbuf, *recybuf;
        sendbuf = (int *) sendbuf notype;
        recybuf = (int *) recybuf notype:
        if (root != 0 ) MPI_Abort( mpi_comm, 512);
        MPI Comm size(mpi comm. &pool size): MPI Comm rank(mpi comm. &my rank):
        if(my rank != 0 ) tempbuf = (int*)mallor(s*sizeof(int));
        tempbuf2 = (int*)malloc(s*sizeof(int));
        if ( my rank == 0)
                 for(i=0;i<n;i++) recvbuf[i] = sendbuf[i];
                for(i=0;i<a;i++) tempbuf[i] = sendbuf[i];</pre>
        a = m/+-
        if( (m % s) 1= 0 )( s2 = m % s; c++;)
        else s2 - s:
        hist = (int *)malloc(c*sizeof(int)):
        for(i = 0: i < a: i++) hist[i] = pool size:
        gstart = 0:
        while( hist[q-1] > 1 )(
                if (qstart != q-1 && hist[qstart+1]-hist[qstart] > 1){ qstart++;
                 for(i = qstart; i >= qend; i--)(
                        z = (i == 0) 7 hist[0]/2 : (hist[i]-hist[i-1])/2;
                        #3 = ( i == q-1 ) 7 #2 : #;
if( my rank < hist[i] 66 my rank >= hist[i] - x )(
                                 MPI Send(tempbuf, s3, mpi datatype, my rank-z, 512, mpi comm );
                                 if( i < e-1 )(
                                         snext = (i == q-2) 7 s2 : s:
                                         for(i=0:i<anext:i++) tempbuf[i] = sendbuf[(i+1)*s + i]:
                         if( my_rank < hist[i] - z && my_rank >= hist[i] - 2*z ){
                                 MPI Recv( tempbuf2, s3, mpi datatype, my rank+z, 512, mpi comm, &status );
                                 if ( my_rank == 0 )(
                                         for( j = 0; j < x3; j++ ){ recvbuf[i*x + j] += tempbuf2[j];
                                         for( i = 0: i < s3: i++) tempbuf(i) += tempbuf2(i):
                        histfil -- z:
                        if (hist(i) -- 1)(
                                  hist[i] = 0: gend++:
        free( hist ); if(my rank != 0) free( tempbuf ); free( tempbuf2 );
```

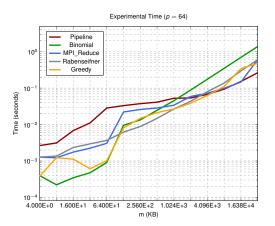
- global_s is the size of a segment and needs to be initialized (if possible "tuned") in advance.
- The implementation is restricted to root being 0, MPI_Datatype being int, and MPI_Op being +. These restrictions are not a consequence of the algorithm and can be removed.

Experimental Results (ratio)



Implemented with OpenMPI v1.4.3 point-to-point functions MPI_Send and MPI_Recv.

Experimental Results (time)



Implemented with OpenMPI v1.4.3 point-to-point functions MPI_Send and MPI_Recv.

Table of Contents

Nonuniform Segmentation

23 of 33

Nonuniform Segmentation

(Note: our algorithm is optimal no matter the segmentation, uniform or not.) Why does segmentation have to be uniform?

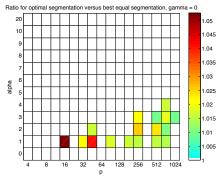
- Experiment: Fix the message size to m = 10 and check all possible segmentations.
- Results for greedy
 - 61 of the 986 total trials where optimized by a nonuniform segmentation.
 - The maximum improvement of nonuniform versus uniform segmentation was 7.3%.
 - Of the 61 trials optimized by a nonuniform segmentation the average improvement was 2%.
- For pipeline, all trials where optimized by uniform segmentation.

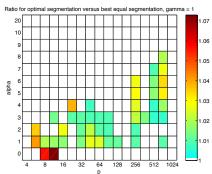
Langou | University of Colorado Denver | Greedy trees |

Nonuniform Segmentation

Sample Segmentations:

Parameters	Percent	Best Uniform	Optimal	
$p = 12, \alpha = 0, \beta = 1, \gamma = 1$	7.3%	(1,1,1,1,1,1,1,1,1)	(2,2,1,1,1,1,1,1)	
$p = 48, \alpha = 1, \beta = 1, \gamma = 1$	2.6%	(2,2,2,2,2)	(3,2,2,2,1)	
			(2,2,1,2,2,1)	
$p = 256, \alpha = 5, \beta = 1, \gamma = 1$	3.0%	(4,4,2)	(5,3,2)	





24 of 33

Table of Contents

Nonuniform Segmentation

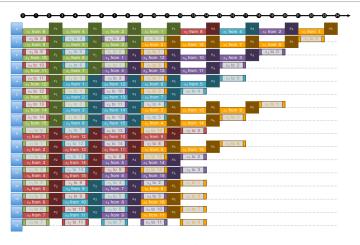
Bidirectional

25 of 33

Bidirectional

- Adapt the unidirectional greedy algorithm to the bidirectional context.
- Reduction and broadcast are essentially the same in bidirectional context. (All processors are performing computation.)
- Optimal broadcast algorithm [Traff and Ripke '08, Bar-Noy and Kipnis '94] scheduled in reverse has time ($\lceil \log_2 p \rceil + q - 1$)($t_{comm} + t_{comp}$).
- Bidirectional greedy has same time complexity (conjecture).
- Rabenseifner ['04] provides algorithm for optimal computation.

Bidirectional Greedy Tree with computation



16 processors, 5 equi-segments, $t_{comm} = 2$ and $t_{comp} = 1$. Solid rectangles represent receiving processors and rectangles with end strips represent sending processors. The darker rectangles represent computation.

27 of 33

Pseudo-code for bidirectional greedy algorithm

```
Algorithm 2: Bidirectional Greedy Algorithm
  R = zeros(p, 1);
  C = zeros(p, 2);
  t = 0:
  M = zeros(p, q):
  while \min\{M(i, j) \mid 1 \le i \le p \text{ and } 1 \le j \le q\} = 0 do
       segStart = min\{j \mid M(1, j) = 0\};
        stop = 1;
        j = segStart - 1;
        while stop do
             j \leftarrow j + i,

COMP = \{i \mid C(i, 1) \le t < C(i, 2) \text{ or } t + t_{comm}(j) > C(i)\};
             I = \{i \mid M(i, j) = 0\};

sendProc = I \setminus COMP \setminus \{i \mid S(i) > t\};
             recvProc = I \setminus COMP \setminus \{i \mid R(i) > t\};
             freeProc = sendProc ∩ recvProc;
              sendProc \leftarrow sendProc \setminus freeProc
             recvProc ← recvProc \ freeProc;
             s = |sendProc|:
             r = |recvProc|;
              f = |freeProc|:
              if s = r then
                   y = \lfloor f/z \rfloor,

sendProc \leftarrow sendProc \cup \{freeProc(i) \mid f - y + 1 \le i \le f\};
                   recvProc \leftarrow recvProc \bigcup \{freeProc(i) \mid 1 \le i \le y\};
             else if a crthen
                   m = \min(f, y);
                   if m > 0 then
                    sendProc \leftarrow sendProc[]{freeProc(i) | (f - (m + x) + 1 \le i \le f};
                   if x > 0 then
                    L recvProc ← recvProc ∪{freeProc(i) | 1 ≤ i ≤ x};
             else if \tau < s then
                   m = \min(f, y):
                   x = |(f - m)/2|;
                   if m > 0 then
                    | recvProc ← recvProc | | {freeProc(i) | 1 ≤ i ≤ m + x};
                   if x > 0 then
                    sendProc \leftarrow sendProc \bigcup {freeProc(i) \mid f - x + 1 \le i \le f};
             l = min(|sendProc|, |recvProc)
             if l = 0 then
                   sendProc \leftarrow \emptyset;
                   recvProc \leftarrow \emptyset:
                   sendProc = \{sendProc(i) \mid 1 \le i \le l\};
                   recvProc = \{recvProc(i) | 1 \le i \le l\}:
              M(i, j) = t + t_{comm}(j), \forall i \text{ s.t. } i \in \text{sendProc};
              S(i) = t + t_{comm}(i), \forall i \text{ s.t. } i \in \text{sendProc}:
              R(i) = t + t_{comm}(j) + t_{comp}(j), \forall i \text{ s.t. } i \in \text{recvProc};
             C(i, 1) = t + t_{comm}(j), \forall i \text{ s.t. } i \in \text{recvProc};
             if |\{i \mid M(i, j) = 0\}| = 1 then
              M(1, j) = max(\{M(i, j) | 1 \le ilep\}) + t_{comp}(j);
             if |\{i \mid S(i) \le t\}| + |\{i \mid R(i) \le t\}| < 2 then

| stop = 0:
             else if i \ge a then
              L stop = 0;
```

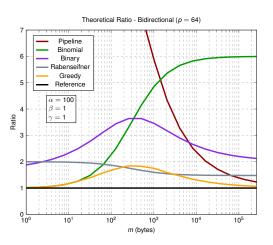
28 of 33

Lower bounds for each term in communication time

	Latency	Bandwidth	Computation
Reduce	$\lceil log_2p \rceil \alpha$	meta	$\frac{p-1}{p}m\gamma$
Binomial	$\lceil \log_2 p \rceil \alpha$	$\lceil \log_2 p \rceil m \beta$	$\lceil \log_2 p \rceil m \gamma$
Pipeline	$(p-1)\alpha$	$(p-3+m)\beta$	$(p-3+m)\gamma$
Binary	$2(N-1)\alpha$	$(N-3+2m)\beta$	$(N-3+2m)\gamma$

$${}^*N = \lceil \log_2(p+1) \rceil$$

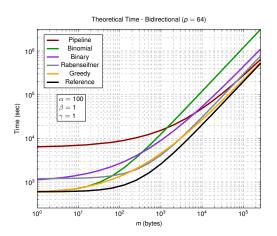
Theoretical Results (ratio)



Reference Line: $\lceil \log_2 p \rceil \alpha + m\beta + \frac{p-1}{p} \gamma$

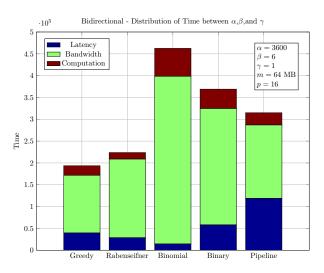
30 of 33

Theoretical Results (time)

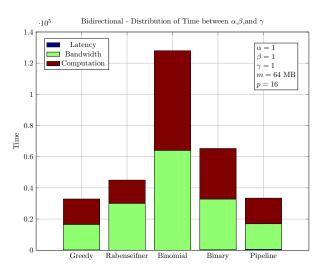


Reference Line: $\lceil \log_2 p \rceil \alpha + m\beta + \frac{p-1}{p} \gamma$

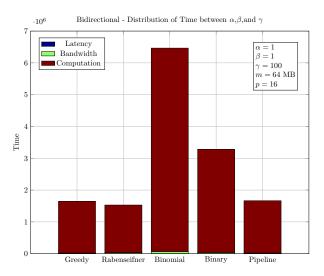
Distribution of time between α , β , γ



Distribution of time between α , β , γ



Distribution of time between α , β , γ



Conclusion

Unidirectional:

- Compared the greedy reduction with three standard algorithms.
- Greedy was the best theoretically.
- Most improvement is for medium sized messages (1Kb 1Mb).
- Nonuniform segmentation is considered.
- Greedy is optimized by nonuniform segmentation for some machine parameters.

Bidirectional:

- Adapt unidirectional greedy algorithm for a bidirectional system
- Same time complexity of optimal broadcast algorithm.
- Implementation coming soon...

Questions?