Tree traversals with task-memory affinities on hybrid platforms

Julien Herrmann, Loris Marchal, Yves Robert

Friday Lunch Talk, ICL - May 17, 2013

Outline

Introduction and model

Complexity results

Heuristics

Conclusion and perspectives

Outline

Introduction and model

Complexity results

Heuristics

Conclusion and perspectives

Motivation

- Scientific computing: workflows with large data files
- ▶ Bad evolution of processing power vs. communication cost: $1/\text{Flops} \ll 1/\text{bandwidth} \ll \text{latency}$

Gap increases exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

Solutions

- ► Communication-avoiding algorithms
- Restrict to in-core memory (out-of-core is expensive), and minimize memory peak

Motivation

- Scientific computing: workflows with large data files
- ▶ Bad evolution of processing power vs. communication cost: $1/\text{Flops} \ll 1/\text{bandwidth} \ll \text{latency}$

► Gap increases exponentially

	annual improvements
Flops rate	59%
mem. bandwidth	26%
mem. latency	5%

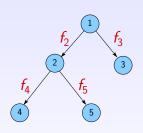
Solutions:

- Communication-avoiding algorithms
- ► Restrict to in-core memory (out-of-core is expensive), and minimize memory peak

Tree-shaped workflows

Sparse-matrix factorization with multifrontal methods:

- Elimination tree (task graph)
- ► Large memory peak: memory usage becomes a bottleneck



- Out-tree of tasks
- Dependencies: files with different sizes
- When processing a node, input and output files must fit in memory
- After processing a node, input file is deallocated
- ► Node schedule (=tree traversal) impacts memory peak
- Schedule for corresponding in-tree: mirror of schedule for out-tree

Memory minimizing traversals: state of the art

General problem on DAGs, with unit costs (pebble game):

- ▶ P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
- ▶ Without re-computation: NP-complete [Sethi, 1973]

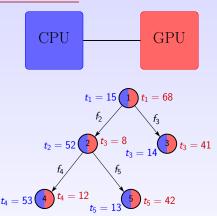
For tree-shaped task graphs, with arbitrary costs:

- ▶ Best depth-first traversal [Liu, 1986]
- ▶ Best traversal [Liu, 1987]

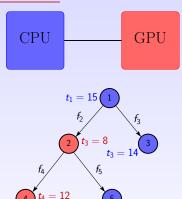
Previous studies:

- ► Comparison of optimal and post-order traversals
- Complexity study of parallel tree traversals

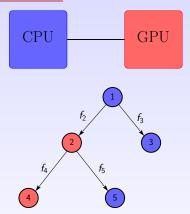
- Realistic model: unrelated computation times
- ► Simpler model: strong affinities
- Preliminary complexity study: only memory matters (sequential execution)



- ▶ Realistic model: unrelated computation times
- ► Simpler model: strong affinities
- Preliminary complexity study: only memory matters (sequential execution)

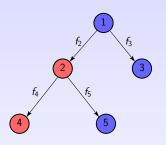


- ▶ Realistic model: unrelated computation times
- ► Simpler model: strong affinities
- Preliminary complexity study: only memory matters (sequential execution)



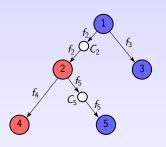
- ▶ Realistic model: unrelated computation times
- ► Simpler model: strong affinities
- Preliminary complexity study: only memory matters (sequential execution)

Model



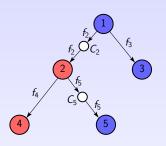
- ▶ n colored nodes (tasks)
- ▶ f_i: size of input file of task i
- No output file for leaves
- Communication nodes
- No unavoidable communications
- Tree traversal: ordering of computation and communication nodes (which enforces dependencies)
- ► When a node is processed, its input/output files must fit in the corresponding memory
- lacktriangle Objective: minimize both memory peaks M_{blue} and M_{red}

Model



- ▶ n colored nodes (tasks)
- ▶ f_i: size of input file of task i
- No output file for leaves
- Communication nodes
- No unavoidable communications
- Tree traversal: ordering of computation and communication nodes (which enforces dependencies)
- ► When a node is processed, its input/output files must fit in the corresponding memory
- ightharpoonup Objective: minimize both memory peaks M_{blue} and M_{red}

Model



- ▶ n colored nodes (tasks)
- $ightharpoonup f_i$: size of input file of task i
- No output file for leaves
- Communication nodes
- No unavoidable communications
- Tree traversal: ordering of computation and communication nodes (which enforces dependencies)
- When a node is processed, its input/output files must fit in the corresponding memory
- ightharpoonup Objective: minimize both memory peaks M_{blue} and M_{red}

Outline

Introduction and mode

Complexity results

Heuristics

Conclusion and perspectives

Complexity

TWOMEMORYTRAVERSAL

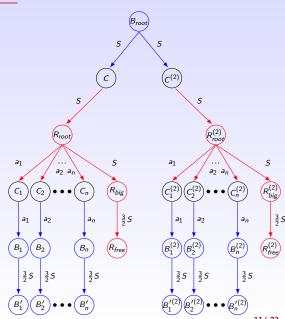
Given a tree \mathcal{T} , and two bounds M_{red} and M_{blue} , is there a traversal σ of the tree that uses less than M_{red} red memory and M_{blue} blue memory?

Theorem: NP-completeness

TWOMEMORYTRAVERSAL is NP-complete.

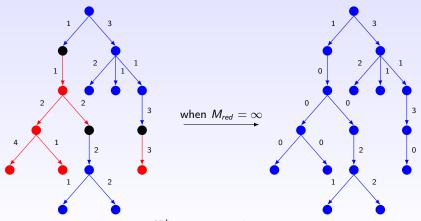
NP-completeness proof

- ► The problem belongs to NP
- ► Reduction from the 2-Partition problem
- ► Instance of the 2-Partition problem: $\begin{cases} a_1, a_2, ..., a_n \\ \sum_{i=1}^n a_i = S \end{cases}$
- Instance of the TwoMemoryTraversal problem: $\begin{cases} M_{red} = 3S \\ M_{blue} = 2S \end{cases}$



When one memory is unbounded

► Minimization of the second memory usage can be reduced to the uncolored problem.



$$M_{\mathrm{blue}}^{\mathrm{opt}}(\mathcal{T}) = M^{opt}(\mathcal{T}_{blue})$$

Joint minimization of both objectives

Zenith: optimal point for both memories (not a feasible solution a priori)

Theorem: No Zenith approximation

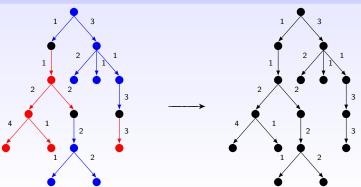
There exists no algorithm that is both an α -approximation for blue memory peak minimization and a β -approximation for red memory peak minimization, when scheduling bi-colored trees.

Joint minimization of both objectives

Definition

Given a bi-colored tree \mathcal{T} , we note:

- $\blacktriangleright~\mathcal{T}_{\rm unco}$ the corresponding uncolored tree
- ► M_{unco}^{opt} the minimal amount of memory needed to process it.

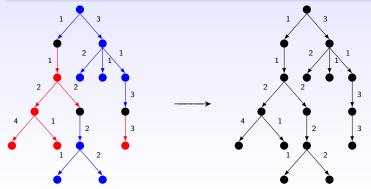


Joint minimization of both objectives

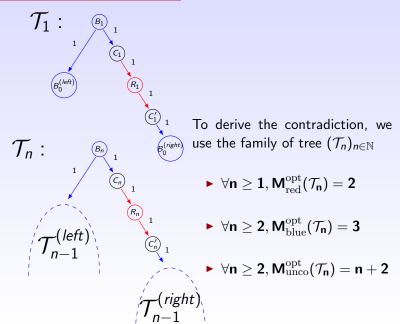
Lemma 1

Given a bi-colored tree $\mathcal T$ and an arbitrary traversal σ of $\mathcal T$ that requires M^{σ}_{red} units of red memory and M^{σ}_{blue} of blue memory. Then necessarily:

$$M_{red}^{\sigma} + M_{blue}^{\sigma} \geq M_{unco}^{opt}$$



Inapproximability proof



Inapproximability proof

- ▶ Two integers: α and β
- ▶ An algorithm: A being an (α,β) -approximation of the Zenith.

$$n_0 = \lceil 3\alpha + 2\beta \rceil$$

$$\begin{aligned} M_{\text{blue}}^{\mathcal{A}}(\mathcal{T}_{n_0}) + M_{\text{red}}^{\mathcal{A}}(\mathcal{T}_{n_0}) &\leq 3\alpha + 2\beta \\ &< \lceil 3\alpha + 2\beta \rceil + 2 \\ &= M_{\text{unco}}^{\text{opt}}(\mathcal{T}_{n_0}^{\text{unco}}) \end{aligned}$$

Outline

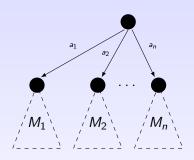
Introduction and mode

Complexity results

Heuristics

Conclusion and perspectives

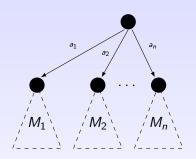
Best Depth First traversal

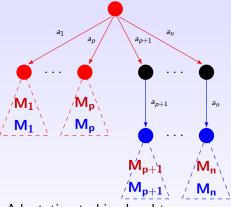


Liu's Best Depth-First Traversal:

► Subtrees in non-decreasing order of $M_i - a_i$

Best Depth First traversal





Liu's Best Depth-First Traversal:

Subtrees in non-decreasing order of $M_i - a_i$

Adaptation to bi-colored trees:

► Subtrees in non-decreasing order of $M_i - a_i$

Heuristics

- ► BestDepthFirst
- ► LIUUNCOLORED: optimal algorithm for the single memory problem [Liu, 1987] (optimal for the sum)
- LIUWEIGHTEDSUM: Liu's algorithm on the tree with normalized weight for the edges (optimal for the weighted sum)

 LIUWEIGHTEDMAX: Liu's algorithm with the maximum relative overhead as criterium for combination (not optimal for the maximum)

Data sets

- ► REALTREES: assembly trees resulting of a multi-frontal factorization of sparse matrices [University of Florida Sparse Matrix Collection]
- ► COLOREDTREES: assembly trees with a CPU/GPU coloring
- ► RANDCOLOREDTREES: assembly trees with a random coloring
- ► RANDWEIGHTEDTREES: assembly trees with a random coloring and random edges weight
- ► RANDOMTREES: generated random trees

Results

- Bi-criteria optimization (two equivalent memories)
- Criterion: maximum relative overhead

$$max\left(\frac{M_{red}^{used}-M_{red}^{opt}}{M_{red}^{opt}},\frac{M_{blue}^{used}-M_{blue}^{opt}}{M_{blue}^{opt}}\right)$$

Data set	Algorithm	Avg.	Max.	Std. Dev.	Frac. of Opt.	≤ 10%
ColoredTrees	Depth-first	6.3%	64.4%	8.0%	55.6%	73.7%
	LIUUNCOLORED	6.6%	60.0%	8.3%	55.0%	73.8%
	LiuWeightedSum	7.5%	76.0%	9.1%	52.8%	70.6%
	LiuWeightedMax	8.4%	116.5%	9.9%	49.8%	68.3%
RANDCOLOREDTREES	Depth-first	3.8%	44.0%	5.4%	67.2%	83.9%
	LIUUNCOLORED	5.2%	52.6%	6.9%	59.7%	78.0%
	LiuWeightedSum	5.9%	52.6%	7.3%	54.1%	75.8%
	LiuWeightedMax	6.0%	52.3%	7.2%	51.4%	75.5%
RANDWEIGHTEDTREES	Depth-first	20.9%	90.3%	18.6%	28.3%	44.6%
	LIUUNCOLORED	15.4%	413.1%	17.0%	26.5%	60.2%
	LiuWeightedSum	13.4%	107.5%	16.3%	37.7%	65.2%
	LiuWeightedMax	10.2%	88.2%	13.6%	39.8%	72.7%
RANDOMTREES	Depth-first	4.5%	28.2%	4.3%	33.4%	83.4%
	LiuUncolored	6.8%	32.9%	4.8%	14.6%	72.6%
	LiuWeightedSum	4.4%	21.4%	3.7%	20.6%	86.0%
	LiuWeightedMax	3.4%	23.5%	3.2%	26.0%	92.0%

Outline

Introduction and mode

Complexity results

Heuristics

Conclusion and perspectives

Conclusion and perspectives

- Model for memory-aware hybrid computations
- ▶ NP-completeness and inapproximations results
- Optimal depth-first search traversal
- Design of heuristics, experimentally compared on real trees

Perspectives:

- Refine the model
 - Include task computation times on both resources
 - Minimize both makespan and memory peaks
 - Model data movement (CPU-GPU communications)
 - Consider several CPUs/GPUs
- Consider general DAGs