Simulation Using Dynamic Schedulers

Blake Haugen 4-19-13

Introduction

- Schedulers
 - QUARK
 - StarPU
 - OmpSs/SMPSs
- Simulation Methodology
- Results
- Future Work

OmpSs/SMPSs

- Developed from StarSs
 - OmpSs
 - SMPSs
 - CellSs
 - GPUSs
- OmpSs (Latest Version)
 - Nanos++ Runtime
 - OmpSs
 - Chapel
 - OpenMP
 - Mercurium Compiler
 - Source to Source Compiler
 - C, C++, Fortran(in development)

OmpSs/SMPSs

- Entirely Based on Compiler Directives
 - Little interaction with underlying implementation
- GPU Support (Simplified Interface)
- Trace Generation
- Experimental Distributed System
- No Libraries Necessary at Runtime
- Various Scheduling Algorithms
- No Support for Multithreaded Tasks

QUARK

- Currently No GPU Support
- Distributed Tasks Supported
- Create and Insert Tasks
 - Analyze Pointers
 - Determine Dependencies
 - Schedule accordingly
- DAG Generation
- No Libraries Necessary at Runtime
- Supports Multithreaded Tasks

StarPU

- GPU Support
 - Automatic Data transfers
- Distributed Supported
 - User Defined
 - Automatic
- Multiple Interfaces
- Dependency analysis
 - Explicit Using Tags
 - Implicit

StarPU

- Data is Associated with Handles
- Various Scheduling Algorithms
- Performance Analysis
- DAG Generation
- Built-in Tracing Functions
- Libraries Necessary at Runtime
- Supports Multithreaded Tasks

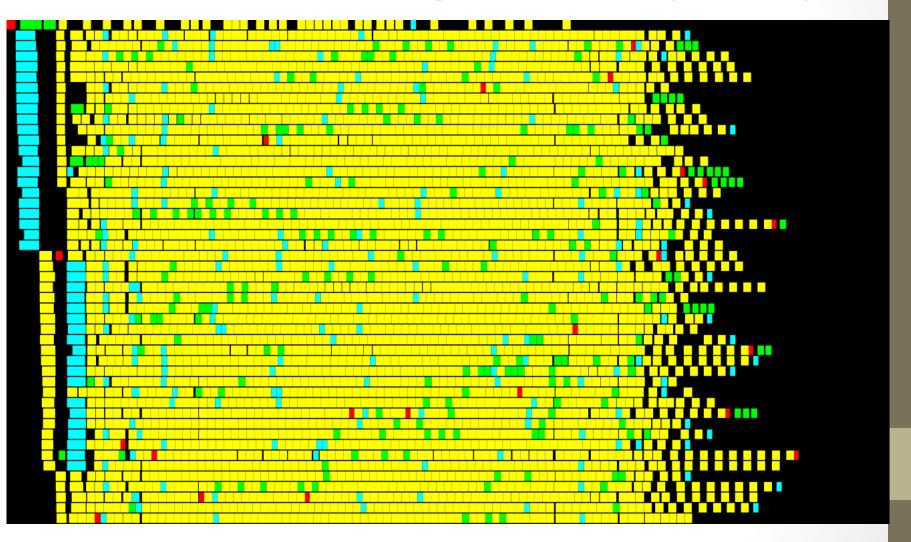
Scheduler Comparison

- OmpSs/SMPSs
 - Quickest To Implement
 - Lacks Some Flexibility
 - Documentation and Examples Lacking
- QUARK
 - Small Interface
 - Some Features Still in Development
 - Several examples in PLASMA
 - Good Documentation
- StarPU
 - Enormous Feature Set
 - Good Documentation
 - Example Codes Poorly Documented

Simulation Methodology

- Create Simulated Trace
- Scheduler maintains dependencies
- No Computation is Performed
- Three Elements
 - Simulation Clock
 - Task Queue
 - Trace

Simulation Methodology

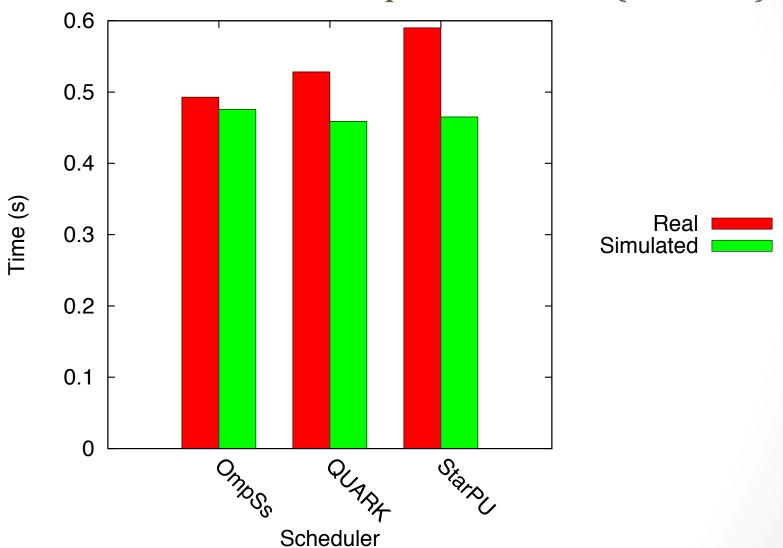

- Initialize trace and Simulation
- Replace all computation calls with simulation calls
- Maintain memory dependency inputs
- Dump Trace

Simulation Methodology

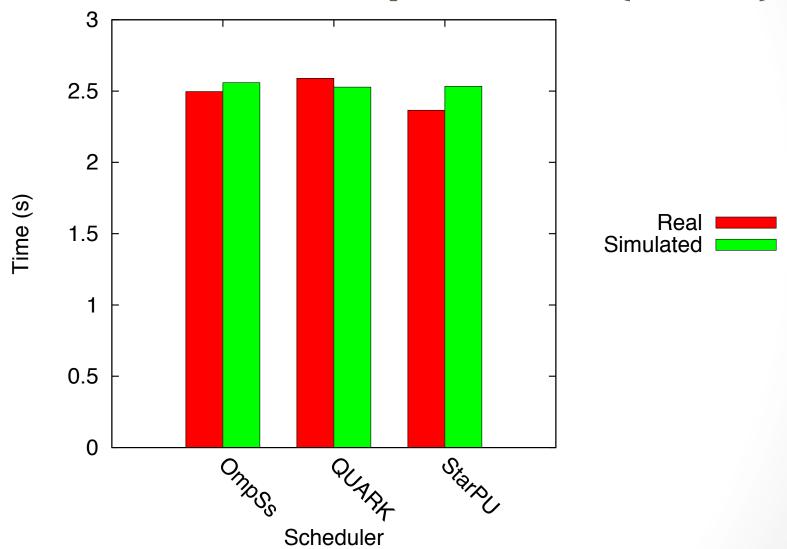
- 1. Calculate Task End Time
- 2. Insert in Task Queue
- 3. Wait Until Front of Queue
- 4. Remove from Queue
- 5. Update Simulation Clock
- 6. Insert Info in trace

Real Trace QR

N=3096 NB=180 AMD Opteron 6180SE (48 Cores)


Simulated Trace QR

N=3096 NB=180 AMD Opteron 6180SE (48 Cores)



Cholesky

N=5000 NB=200 AMD Opteron 6180SE (12 Cores)

QRN=5000 NB=200 AMD Opteron 6180SE (12 Cores)

Future Work

- Simulate LU and other workloads
- GPU Tasks
- Multithreaded Tasks
- Increase simulation speed

Conclusions

- Schedulers
- Simulation Methodology
- Results
- Future Work

Questions?