Quadruple Precision BLAS
Subroutines on GPUs

Feb. 3, 2012

Daichi MUKUNOKI

(Advisor: Prof. Daisuke Takahashi)
Graduate School of Systems and Information
Engineering, University of Tsukuba, JAPAN

W Background
® Motivation & Goal

¥ Double-double type quadruple precision operations

¥ Implementation of quadruple precision BLAS on GPUs
W Performance on Tesla C2050
W Triple precision?

W Conclusion

Background

¥ Demand for quadruple precision operations
® Need a quadruple precision to compute ill conditioned problems

® In large-scale computing, an accumulation of round-off error
may become more serious

¥ Double-double (DD) type quadruple precision [Dekker1971]

® Use two double precision floating-point value to represent one
quadruple precision value

® Quadruple precision arithmetic library:
e.g. DDFUN9O, QD ...

® High precision BLAS using DD-type operations:
XBLAS, MBLAS

¥ Quadruple precision BLAS is not implemented on GPUs

Motivation & Goal

¥ Motivation

® Quadruple precision operation is highly compute-
Intensive operation

® Quadruple precision linear algebra operations are
suitable for GPU acceleration

® Our goal

® To implement fast quadruple precision BLAS on GPUs
using DD-type operations

® To evaluate the performance of three different levels of
BLAS subroutines

» Levell BLAS: AXPY (y=ax+y)
» Level2 BLAS: GEMV (y=aAx+By)
» Level3 BLAS: GEMM (C=aAB+3C)

DD-type Operations (1/2)

¥ Double-double (DD) type quadruple precision value

® One quadruple precision value a is represented using two
double precision value a,; and a,,

T ulp: unit of least precision of floating-point value

KDD-type quadruple precision number A
Exponent (11 bits) Significand (52+52=104 bits)
Sign
: a. - a
/Double precision number N /Double precision number N
Sign Exponent Significand Sign Exponent Significand
(1 bit) (11 bits) (52 bits) (1 bit) (11 bits) (52 bits)
a,. a
\ I hi / \ I lo /

DD-type Operations (2/2)

= DD-type quadruple precision arithmetic operations

® Can compute using only double precision floating-point
arithmetic operations

® Used the same algorithms as QD library [Hida et al.]

DD-type multiplication

C,.:+ C =(a..+a.)*(b,..+Db T e: round-off error of (a,;* b,;)
(hi lo) — (h % I") (hi l") calculated by an error-free floating-point
Chi = (ay; * by)

_ arithmetic algorithm [Dekker1971]
¢, =€+ (ay* by +(a,* by)
ahi alo
X bhi blo
DDMul (from QD [Hlda et aI]) (1) chi = ahi x bhi _ (2)
DDMul(ah, al, bh, bl){ ahi x blo
p = ah*bh; /1 (1) + bhi x alo
e = fma(ah*bh-ch), /1 (2) - -
t = (ah*bl)+e ; //(3) chi t = (ahi x blo) +e |(3)
e = (bh*al)+t; /] (4) + bhxal
ch = p+e; /1 (5 2 .
cl = f—(ch-p); /] ?6ﬁ chi clo = (bhi x alo) + t| (4)
return(ch, cl); Normalize (5,6)
4 chi clo

Cost of DD-type Operations

® Algorithms from QD library [Hida et al.]
® Can use one FMA instruction for DD-type muiltiplication

® Number of instructions for DD-type operations

of Double Precision Instructions

Add/Sub Mul FMA Total
Double Prec. MulAdd (a*b+c) 0 0 1 1
DD-type Add (a+b) 11 0 0 11
DD-type Mul (a*b) 5 3 1 9
DD-type MulAdd (a*b+c) 16 3 1 20

¥ On MulAdd operation, the computation cost of DD-type
operation is 20x more than double precision operation

® AXPY, GEMV, GEMM consist mainly of MulAdd

Theoretical Peak Performance on GPUs

of Double Precision Instructions

Add/Sub Mul FMA Total
Double Prec. MulAdd (a*b+c) 0 0 1 1
DD-type MulAdd (a*b+c) 16 3 1 20

W Performance of MulAdd on Tesla C2050
©® DDFlops: DD-type floating point operations per second
® 1 double prec. instruction requires 2 cycles on Tesla C2050

® Double prec: 1.15 [GHz] x 14 [SMs] X 32 [CUDA Cores] X
(2 [Flop]/ (1 [instruction] X 2 [cycles])) = §18.2 [GFlops]

® Quadruple prec: 1.15 [GHz] x 14 [SMs] X 32 [CUDA Cores] X
(2 [DDFIop]/ (20 [instructions] X 2 [cycles])) = 25.76 [GDDFlops]

» 25.76 [GDDFlops] X 21 [Flop] / 2 [DDFlop] = 270.5 [GFlops]

- this is because 19/20 instructions are NOT FMA instruction...

Implementation (1/2)

¥ Implemented three BLAS subroutines
® AXPY (y=ax+ty), GEMV (y=aAx+By), GEMM (C=aAB+BC)

¥ Implementation is similar to “doublecomplex” kernel

® DD-type value is stored in “double2” type vector value

® DD-type operations are implemented as a device function
with ©_ forceinlined " (no function call overhead)

® Each thread performs one DD-type operation

__device _ forceinline__ void
CUDDMul (double2 &a, double2 &b, double2 &c) {
double? t;

CUTwoProdFMA (a.x, b.x, t.x, t.y);
t.y =__dadd_rn(t.y, _ dadd_rn(__dmul_rn(a.x, b.y), __dmul_rn(a.y, b.x)));
CUQuickTwoSum (t.x, t.y, c.X, C.y);

h

Implementation (2/2)

¥ Implementation of BLAS kernels
® Used blocking for shared memory (GEMV & GEMM)

® Experimentally determined the optimal blocking size and
the number of threads BLK

+—>

A

mat. B

NT

BLKI M

mat. A mat. C

Performance Evaluation

® Environment
® CPU: Xeon E5630*2 (2.53GHz, Quad-Cores, 2 sockets)
® GPU: Tesla C2050 (ECC-enabled)
® CentOS 6.0, CUDA ver. 4.0, gcc 4.4.4 (-O3)

¥ Methodology

® Measured the performance using DDFlops
® Not including the time of PCle communications

® Also implemented and evaluated the CPU version
® Using QD library 2.3.11 for quadruple precision operations
® Performed in multi-threads using OpenMP on 8 cores

® Faster than MBLAS'’s quadruple precision subroutines

11

GEMM: C=aAB+pC

GDDFlops
NS SR

))
- @ o A

W O, N ©

Relative Execution Time

2048

Performance
f =*=Xeon E5630*2
[===(2050
0 512 1024 1536
N=M=-K

Execution Time (on Tesla C2050)

W‘

N=M=K

// “*“Quadruple
““*Double .
(CUBLAS4.0)
0 512 1024 1536 2048

N=2,048:

(g

L)

L)

Compute-bound on GPU
(due to Byte/Flop ratio)

22 GDDFlops
(=231 GFlops of double)
86% of theoretical peak

21x faster than CPUs
(4cores™2)

13x slower than DGEMM

T this is because, DGEMM is
only 58% of theoretical peak

Related work: 23 GDDFlops
on TeslaC2050 [Nakata2011]

12

Performance

| =*=Xeon E563072
=*=C2050

o
e

102400

GDDFlops
S = N W K~ O

10240000

Execution Time (on Tesla C2050)

“*Quadruple
Double

' i (CUBLAS4.0)

10240000

—

Relative Execution Time

102400

AXPY: y=ax+y

N=10,240,000:

Memory-bound on GPU
(due to Byte/Flop ratio)

4.4 GDDFlops
17% of theoretical peak

6x faster than CPUs
(4cores™2)

2x slower than DAXPY

13

GEMV: y=aAx+By

Performance

12

~
S

GDDFlops

SN R OO

0

Relative Execution Time

== Xeon E563072
===C2050

2048

4096
M=N

6144

Execution Time (on Tesla C2050)

8192

M=N

“*“Quadruple
“*Double
(CUBLAS4.0)
2048 4096 6144 8192

N=8,192:

® Memory-bound on GPU
(due to Byte/Flop ratio)

® 12 GDDFlops
® 45% of theoretical peak

15x faster than CPUs
(4cores™2)

® 2x slower than DGEMV

14

Conclusion

® Implemented and evaluated DD-type quadruple precision
BLAS subroutines on Tesla C2050

W Computation cost of DD-type quadruple precision operation is
20x more than double precision in theory (on MulAdd)

W Actual execution time is only 2x more (AXPY & GEMV) ~ 13x
more (GEMM) than double precision subroutines of CUBLAS

® Quadruple precision BLAS can be accelerated using GPUs

» On Tesla C2050, 6x faster (AXPY), 15x faster (GEMV),
21x faster (GEMM) than that on Xeon E563072 (4*2cores)

W Quadruple precision linear algebra operations are suitable for
GPU acceleration

15

Triple Precision BLAS?

Triple Precision?

¥ Why triple precision?

® Triple precision is clearly effective in cases where quadruple
precision is not required but double precision is insufficient

® |n such cases, triple precision can save memory space &
can save wasted bandwidth

» Quadruple precision AXPY & GEMV are memory-bound
on GPUs: performance is close to 1/2 of double prec.

» On memory-bound operations, triple precision can
achieve 2/3 of double precision performance?

W Triple precision has never been implemented on modern
processors such as GPUs and x86 CPUs.

17

D+S-type Triple Precision

¥ Double+Single (D+S) type triple precision value

® Stored one triple precision value in one double precision
value & one single precision value (similar to DD-type)

KD+S-type triple precision number N
Exponent (8 bits) Significand (52+23=75 bits)
Sign I
(1 bit) ay; a,
\)

T Exponent is 8 bits: size of exponent depends on lower part’s exponent

¥ Double+Single (D+S) type triple precision operations

® D+S-type operations require a lot of typecastings
between single and double precision

® D+S-type is slower than DD-type on Tesla C2050 (also
GeForce series) in theory and in practice

18

Triple Precision BLAS on GPUs

¥ Implemented “triple precision interface” for quadruple
precision BLAS

® |nput/output data are D+S-type triple precision, but
operations are DD-type quadruple precision

® Implementation techniques are almost the same as
quadruple precision subroutines

® One triple precision value is 12-Bytes

» To fulfill the 128-Bytes memory alignment on CUDA,
we used structure-of-arrays (SOA) layout instead of
array-of-structures (AOS)

» SOA s up to 1.3x faster than AOS

19

AXPY & GEMV

AXPY on Tesla C2050 GEMV on Tesla C2050

© 24 o 24

| =*Quadruple £)
s 22 =*=Triple P = 2.2
S 2 “Double S 2
= (CUBLAS4.0) =
S 18 Q 1.8
ngpy n 1.6 - “*Quadruple
Qo 2 =®=Triple
s 5 " T aseo
& 1.2 € 17 (0)

1

1024 102400 10240000 0 2048 4096 6144 8192

N M=N
® Triple precision AXPY & GEMV are memory-bound, each

execution time is approx. 1.6x and 1.7x more than double prec.

® On memory-bound operations, execution time of triple precision
Is close to 3/4 of quadruple precision subroutines

GEMM on Tesla C2050

15
L
£ 13
I~
.§ 11 “*=Quadruple
8 9 ~*~Triple
Qg 7 “*=Double
e (CUBLAS4.0)
kS 5
€ 3

1

0 512 1024 1536 2048
N=M=-K

® No advantage to use triple precision interface on compute-
bound operations

® Triple precision is a little slower than quadruple
(but it is the same performance as quadruple in theory...)

21

Conclusion

® We implemented triple precision interface for DD-type quadruple
precision BLAS subroutines

W Triple prec. AXPY & GEMV are memory-bound on Tesla C2050

® On memory-bound operations, execution time of triple
precision subroutine is close to 3/4 of quadruple precision

W Triple precision interface is available for memory-bound
operations, in cases where quadruple precision is not required,
but double precision is not sufficient

® Future work:

® To develop fast triple precision operation algorithm (also for
quadruple precision)

® To apply triple & quadruple precision operations to actual
scientific computation
22

Performance of GESV (AX=B)

TeslaC2050 GeForceGTX580
400 600
500
Y 300 MP (SP+DP) | P (SP+DP)
aQ 2 400
O S
&5 200 S 300
MP(DP+QP) 200
100 DP e
100 - VIF P)

QP (CPU) QP (CPU)

0
1024 3072 5120 7168 1024 3072 5120 7168
N N

A=N*N, B=N*1 (NRHS=1)

QP is performed on CPU with 1 thread using MLAPACK (not optimized)
Input matrices are initialized using “dlapackf/77_dlarnv” (random)

of iteration: MP(SP+DP): 3~7, MP(DP+QD): 2

Error (||b-Ax||/||A]]): QP: order 1E-29~-31, MP(DP+QD): order 1E-31~-32

N/ ./ N/

