
Quadruple Precision BLAS
Subroutines on GPUs

	

	

1	

Feb. 3, 2012
Daichi MUKUNOKI
(Advisor: Prof. Daisuke Takahashi)
Graduate School of Systems and Information
Engineering, University of Tsukuba, JAPAN	

2	

Outline
n  Background
n  Motivation & Goal

n  Double-double type quadruple precision operations

n  Implementation of quadruple precision BLAS on GPUs

n  Performance on Tesla C2050

n  Triple precision?

n  Conclusion

3	

Background
n  Demand for quadruple precision operations

l  Need a quadruple precision to compute ill conditioned problems
l  In large-scale computing, an accumulation of round-off error

may become more serious

n  Double-double (DD) type quadruple precision [Dekker1971]

l  Use two double precision floating-point value to represent one
quadruple precision value

l  Quadruple precision arithmetic library:
 e.g. DDFUN90, QD …

l  High precision BLAS using DD-type operations:
 XBLAS, MBLAS

n  Quadruple precision BLAS is not implemented on GPUs

4	

Motivation & Goal
n  Motivation

l  Quadruple precision operation is highly compute-
intensive operation

l  Quadruple precision linear algebra operations are
suitable for GPU acceleration

n  Our goal
l  To implement fast quadruple precision BLAS on GPUs

using DD-type operations
l  To evaluate the performance of three different levels of

BLAS subroutines
Ø  Level1 BLAS: AXPY (y=ax+y)
Ø  Level2 BLAS: GEMV (y=αAx+βy)
Ø  Level3 BLAS: GEMM (C=αAB+βC)

n  Double-double (DD) type quadruple precision value
l  One quadruple precision value a is represented using two

double precision value ahi and alo

DD-type Operations (1/2)

ahi	
 alo	

Significand	
 (52+52=104	
 bits)	
Exponent	
 (11	
 bits)	

DD-type quadruple precision number	

Double precision number	

alo	

Exponent	

(11	
 bits)	

Significand	

(52	
 bits)	

Sign	

(1	
 bit)	

Double precision number	

ahi	

Exponent	

(11	
 bits)	

Significand	

(52	
 bits)	

Sign	

(1	
 bit)	

Sign	

(1	
 bit)	

†	
 ulp:	
 unit	
 of	
 least	
 precision	
 of	
 floa>ng-­‐point	
 value	

a = (ahi, alo) (|alo| <= 0.5ulp(ahi))

bhi × alo	

bh×al	

Normalize	

e = err(ahi × bhi)	

+	

DD-type Operations (2/2)

chi = ahi × bhi	

blo	

alo	
ahi	

t = (ahi × blo) + e	
chi	

clo	
chi	

ahi × blo	

×	
 bhi	

DDMul(ah, al, bh, bl){	

	

p = ah*bh; 	

 	

 	

 	

 	

// (1)	

	

e = fma(ah*bh-ch); 	

 	

 	

// (2)	

	

t = (ah*bl)+e 	

; 	

 	

 	

 	

// (3)	

	

e = (bh*al)+t;	

 	

 	

 	

 	

// (4)	

	

ch = p+e; 	

 	

 	

 	

 	

// (5)	

cl = e-(ch-p); 	

 	

 	

 	

 	

// (6)	

	

return(ch, cl);	

}	

(2)	

+	

clo = (bhi × alo) + t	
chi	

(3)	

(4)	

(5,6)	

(1)	

DD-type multiplication

n  DD-type quadruple precision arithmetic operations
l  Can compute using only double precision floating-point

arithmetic operations
l  Used the same algorithms as QD library [Hida et al.]

(chi + clo) 	

= (ahi + alo) * (bhi + blo)	

	

 	

chi 	

= (ahi * bhi)	

	

 	

clo 	

= e + (ahi * blo) + (alo * bhi)	

†	
 e:	
 round-­‐off	
 error	
 of	
 (ahi* bhi)
calculated	
 by	
 an	
 error-­‐free	
 floa>ng-­‐point	

arithme>c	
 algorithm	
 [Dekker1971]	

DDMul (from QD [Hida et al.])

7

Cost of DD-type Operations
n  Number of instructions for DD-type operations

l  Algorithms from QD library [Hida et al.]
l  Can use one FMA instruction for DD-type multiplication

n  On MulAdd operation, the computation cost of DD-type

operation is 20x more than double precision operation
l  AXPY, GEMV, GEMM consist mainly of MulAdd

# of Double Precision Instructions	

Add/Sub	
 Mul	
 FMA	
 Total	

Double Prec. MulAdd (a*b+c)	
 0	
 0	
 1	
 1	

DD-type Add (a+b)	
 11	
 0	
 0	
 11	

DD-type Mul (a*b)	
 5	
 3	
 1	
 9	

DD-type MulAdd (a*b+c)	
 16	
 3	
 1	
 20	

8

Theoretical Peak Performance on GPUs

n  Performance of MulAdd on Tesla C2050
l  DDFlops: DD-type floating point operations per second
l  1 double prec. instruction requires 2 cycles on Tesla C2050
l  Double prec: 1.15 [GHz] x 14 [SMs] x 32 [CUDA Cores] x

(2 [Flop] / (1 [instruction] x 2 [cycles])) = 515.2 [GFlops]
l  Quadruple prec: 1.15 [GHz] x 14 [SMs] x 32 [CUDA Cores] x

(2 [DDFlop] / (20 [instructions] x 2 [cycles])) = 25.76 [GDDFlops]

Ø  25.76 [GDDFlops] x 21 [Flop] / 2 [DDFlop] ≒ 270.5 [GFlops]
- this is because 19/20 instructions are NOT FMA instruction…

# of Double Precision Instructions	

Add/Sub	
 Mul	
 FMA	
 Total	

Double Prec. MulAdd (a*b+c)	
 0	
 0	
 1	
 1	

DD-type MulAdd (a*b+c)	
 16	
 3	
 1	
 20	

9

Implementation (1/2)
n  Implemented three BLAS subroutines

l  AXPY (y=ax+y), GEMV (y=αAx+βy), GEMM (C=αAB+βC)

n  Implementation is similar to “doublecomplex” kernel
l  DD-type value is stored in “double2” type vector value

l  DD-type operations are implemented as a device function
with “__forceinlined__” (no function call overhead)

l  Each thread performs one DD-type operation

__device__ __forceinline__ void	

CUDDMul (double2 &a, double2 &b, double2 &c) {	

	

double2 t;	

	

CUTwoProdFMA (a.x, b.x, t.x, t.y);	

	

t.y = __dadd_rn(t.y, __dadd_rn(__dmul_rn(a.x, b.y), __dmul_rn(a.y, b.x)));	

	

CUQuickTwoSum (t.x, t.y, c.x, c.y);	

}	

10

Implementation (2/2)
n  Implementation of BLAS kernels

l  Used blocking for shared memory (GEMV & GEMM)

l  Experimentally determined the optimal blocking size and
the number of threads

K� N�

M�

K�

mat. A�

mat. B�

mat. C�

BLK�

BLK�

NT�

NT�

11

Performance Evaluation
n  Environment

l  CPU: Xeon E5630*2 (2.53GHz, Quad-Cores, 2 sockets)

l  GPU: Tesla C2050 (ECC-enabled)

l  CentOS 6.0, CUDA ver. 4.0, gcc 4.4.4 (-O3)

n  Methodology
l  Measured the performance using DDFlops

l  Not including the time of PCIe communications

l  Also implemented and evaluated the CPU version
l  Using QD library 2.3.11 for quadruple precision operations

l  Performed in multi-threads using OpenMP on 8 cores

l  Faster than MBLAS’s quadruple precision subroutines

12	

GEMM: C=αAB+βC

0

4

8

12

16

20

24

0
 512
 1024
 1536
 2048

G
D

D
F

lo
p

s	

N=M=K	

Performance	

Xeon E5630*2

C2050

N=2,048:
l  Compute-bound on GPU

(due to Byte/Flop ratio)
l  22 GDDFlops

 (=231 GFlops of double)
l  86% of theoretical peak
l  21x faster than CPUs

 (4cores*2)
l  13x slower than DGEMM

v  Related work: 23 GDDFlops
on TeslaC2050 [Nakata2011]

1

3

5

7

9

11

13

0
 512
 1024
 1536
 2048

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e
	

N=M=K	

Execution Time (on Tesla C2050)	

Quadruple

Double

(CUBLAS4.0)	

†	
 this	
 is	
 because,	
 DGEMM	
 is	

only	
 58%	
 of	
 theore>cal	
 peak	

1

1.2

1.4

1.6

1.8

2

1024
 102400
 10240000

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e
	

N	

Execution Time (on Tesla C2050)

Quadruple

Double

13	

AXPY: y=αx+y
N=10,240,000:
l  Memory-bound on GPU

(due to Byte/Flop ratio)
l  4.4 GDDFlops
l  17% of theoretical peak
l  6x faster than CPUs

 (4cores*2)
l  2x slower than DAXPY

(CUBLAS4.0)	

0

1

2

3

4

5

1024
 102400
 10240000

G
D

D
F

lo
p

s	

N	

Performance	

Xeon E5630*2

C2050

14	

GEMV: y=αAx+βy
N=8,192:
l  Memory-bound on GPU

(due to Byte/Flop ratio)
l  12 GDDFlops
l  45% of theoretical peak
l  15x faster than CPUs

 (4cores*2)
l  2x slower than DGEMV

0

2

4

6

8

10

12

0
 2048
 4096
 6144
 8192

G
D

D
F

lo
p

s	

M=N	

Performance	

Xeon E5630*2

C2050

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0
 2048
 4096
 6144
 8192

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e
	

M=N	

Execution Time (on Tesla C2050)

Quadruple

Double

(CUBLAS4.0)	

15

Conclusion
n  Implemented and evaluated DD-type quadruple precision

BLAS subroutines on Tesla C2050

n  Computation cost of DD-type quadruple precision operation is
20x more than double precision in theory (on MulAdd)

n  Actual execution time is only 2x more (AXPY & GEMV) ~ 13x
more (GEMM) than double precision subroutines of CUBLAS

n  Quadruple precision BLAS can be accelerated using GPUs

Ø  On Tesla C2050, 6x faster (AXPY), 15x faster (GEMV),
21x faster (GEMM) than that on Xeon E5630*2 (4*2cores)

n  Quadruple precision linear algebra operations are suitable for
GPU acceleration

Triple Precision BLAS?

16	

17	

Triple Precision?
n  Why triple precision?

l  Triple precision is clearly effective in cases where quadruple
precision is not required but double precision is insufficient

l  In such cases, triple precision can save memory space &
can save wasted bandwidth

Ø Quadruple precision AXPY & GEMV are memory-bound
on GPUs: performance is close to 1/2 of double prec.

Ø On memory-bound operations, triple precision can
achieve 2/3 of double precision performance?

n  Triple precision has never been implemented on modern
processors such as GPUs and x86 CPUs.

18	

D+S-type Triple Precision
n  Double+Single (D+S) type triple precision value

l  Stored one triple precision value in one double precision
value & one single precision value (similar to DD-type)

n  Double+Single (D+S) type triple precision operations
l  D+S-type operations require a lot of typecastings

between single and double precision

l  D+S-type is slower than DD-type on Tesla C2050 (also
GeForce series) in theory and in practice

ahi	
 alo	

Significand	
 (52+23=75	
 bits)	
Exponent	
 (8	
 bits)	

D+S-type triple precision number	

Sign	

(1	
 bit)	

†	
 Exponent	
 is	
 8	
 bits:	
 size	
 of	
 exponent	
 depends	
 on	
 lower	
 part’s	
 exponent	

19	

Triple Precision BLAS on GPUs
n  Implemented “triple precision interface” for quadruple

precision BLAS

l  Input/output data are D+S-type triple precision, but
operations are DD-type quadruple precision

l  Implementation techniques are almost the same as
quadruple precision subroutines

l  One triple precision value is 12-Bytes

Ø  To fulfill the 128-Bytes memory alignment on CUDA,
we used structure-of-arrays (SOA) layout instead of
array-of-structures (AOS)

Ø SOA is up to 1.3x faster than AOS

20	

AXPY & GEMV

l  Triple precision AXPY & GEMV are memory-bound, each
execution time is approx. 1.6x and 1.7x more than double prec.

l  On memory-bound operations, execution time of triple precision
is close to 3/4 of quadruple precision subroutines

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1024
 102400
 10240000

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e
	

N	

AXPY on Tesla C2050	

Quadruple

Triple

Double

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0
 2048
 4096
 6144
 8192

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e
	

M=N	

GEMV on Tesla C2050	

Quadruple

Triple

Double

(CUBLAS4.0)	

(CUBLAS4.0)	

21	

GEMM

l  No advantage to use triple precision interface on compute-
bound operations

l  Triple precision is a little slower than quadruple
 (but it is the same performance as quadruple in theory…)

1

3

5

7

9

11

13

15

0
 512
 1024
 1536
 2048

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e
	

N=M=K	

GEMM on Tesla C2050	

Quadruple

Triple

Double

(CUBLAS4.0)	

22

Conclusion
n  We implemented triple precision interface for DD-type quadruple

precision BLAS subroutines
n  Triple prec. AXPY & GEMV are memory-bound on Tesla C2050

l  On memory-bound operations, execution time of triple
precision subroutine is close to 3/4 of quadruple precision

n  Triple precision interface is available for memory-bound
operations, in cases where quadruple precision is not required,
but double precision is not sufficient

n  Future work:
l  To develop fast triple precision operation algorithm (also for

quadruple precision)
l  To apply triple & quadruple precision operations to actual

scientific computation

23	

Performance of GESV (AX=B)

0

100

200

300

400

500

600

1024 3072 5120 7168

G
Fl

op
s	

N	

GeForceGTX580	

MP(DP+QP)	

DP	

QP (CPU) 	

MP (SP+DP)	

SP	

0

100

200

300

400

1024 3072 5120 7168

G
Fl

op
s	

N	

TeslaC2050

MP(DP+QP)	

QP (CPU) 	

DP	

MP (SP+DP)	

SP	

l  A=N*N, B=N*1 (NRHS=1)
l  QP is performed on CPU with 1 thread using MLAPACK (not optimized)
l  Input matrices are initialized using “dlapackf77_dlarnv” (random)
l  # of iteration: MP(SP+DP): 3~7, MP(DP+QD): 2
l  Error (||b-Ax||/||A||): QP: order 1E-29~-31, MP(DP+QD): order 1E-31~-32

