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Background 
n  Demand for quadruple precision operations 

l  Need a quadruple precision to compute ill conditioned problems 
l  In large-scale computing, an accumulation of round-off error 

may become more serious 

n  Double-double (DD) type quadruple precision [Dekker1971] 

l  Use two double precision floating-point value to represent one 
quadruple precision value 

l  Quadruple precision arithmetic library:
          e.g. DDFUN90, QD … 

l  High precision BLAS using DD-type operations:
          XBLAS, MBLAS 

n  Quadruple precision BLAS is not implemented on GPUs 
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Motivation & Goal 
n  Motivation 

l  Quadruple precision operation is highly compute-
intensive operation 

l  Quadruple precision linear algebra operations are 
suitable for GPU acceleration 

n  Our goal 
l  To implement fast quadruple precision BLAS on GPUs 

using DD-type operations 
l  To evaluate the performance of three different levels of 

BLAS subroutines 
Ø  Level1 BLAS: AXPY (y=ax+y) 
Ø  Level2 BLAS: GEMV (y=αAx+βy) 
Ø  Level3 BLAS: GEMM (C=αAB+βC) 

 



n  Double-double (DD) type quadruple precision value 
l  One quadruple precision value a is represented using two 

double precision value ahi and alo  

     

DD-type Operations (1/2) 

ahi	
 alo	
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Exponent	
  (11	
  bits)	


DD-type quadruple precision number	


Double precision number	
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Exponent	
  
(11	
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Sign	
  
(1	
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Double precision number	
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†	
  ulp:	
  unit	
  of	
  least	
  precision	
  of	
  floa>ng-­‐point	
  value	


a = (ahi, alo)    (|alo| <= 0.5ulp(ahi)) 



bhi × alo	


bh×al	


Normalize	


e = err(ahi × bhi)	


+	


DD-type Operations (2/2) 

chi = ahi × bhi	


blo	

alo	
ahi	


t = (ahi × blo) + e	
chi	


clo	
chi	


ahi × blo	


×	
 bhi	


DDMul(ah, al, bh, bl){	


	

p = ah*bh; 	

 	

 	

 	

 	

// (1)	


	

e = fma(ah*bh-ch); 	

 	

 	

// (2)	


	

t = (ah*bl)+e 	

; 	

 	

 	

 	

// (3)	


	

e = (bh*al)+t;	

 	

 	

 	

 	

// (4)	


	

ch = p+e; 	

 	

 	

 	

 	

// (5)	


cl = e-(ch-p); 	

 	

 	

 	

 	

// (6)	


	

return(ch, cl);	



}	


(2)	


+	


clo = (bhi × alo) + t	
chi	


(3)	


(4)	

(5,6)	


(1)	


DD-type multiplication 

n  DD-type quadruple precision arithmetic operations  
l  Can compute using only double precision floating-point 

arithmetic operations 
l  Used the same algorithms as QD library [Hida et al.] 

(chi + clo) 	

= (ahi + alo) * (bhi + blo)	


	

 	

chi 	

= (ahi * bhi)	


	

 	

clo 	

= e + (ahi * blo) + (alo * bhi)	


†	
  e:	
  round-­‐off	
  error	
  of	
  (ahi* bhi) 
calculated	
  by	
  an	
  error-­‐free	
  floa>ng-­‐point	
  
arithme>c	
  algorithm	
  [Dekker1971]	


DDMul (from QD [Hida et al.]) 
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Cost of DD-type Operations 
n  Number of instructions for DD-type operations 

l  Algorithms from QD library [Hida et al.] 
l  Can use one FMA instruction for DD-type multiplication 

 
 
n  On MulAdd operation, the computation cost of DD-type 

operation is 20x more than double precision operation 
l  AXPY, GEMV, GEMM consist mainly of MulAdd 

# of Double Precision Instructions	


Add/Sub	
 Mul	
 FMA	
 Total	


Double Prec. MulAdd (a*b+c)	
 0	
 0	
 1	
 1	


DD-type Add (a+b)	
 11	
 0	
 0	
 11	


DD-type Mul (a*b)	
 5	
 3	
 1	
 9	


DD-type MulAdd (a*b+c)	
 16	
 3	
 1	
 20	
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Theoretical Peak Performance on GPUs 
 

n  Performance of MulAdd on Tesla C2050 
l  DDFlops: DD-type floating point operations per second 
l  1 double prec. instruction requires 2 cycles on Tesla C2050 
l  Double prec: 1.15 [GHz] x 14 [SMs] x 32 [CUDA Cores] x           

(2 [Flop] / (1 [instruction] x 2 [cycles])) = 515.2 [GFlops] 
l  Quadruple prec: 1.15 [GHz] x 14 [SMs] x 32 [CUDA Cores] x          

(2 [DDFlop] / (20 [instructions] x 2 [cycles])) = 25.76 [GDDFlops] 

Ø  25.76 [GDDFlops] x 21 [Flop] / 2 [DDFlop] ≒ 270.5 [GFlops] 
- this is because 19/20 instructions are NOT FMA instruction… 

# of Double Precision Instructions	


Add/Sub	
 Mul	
 FMA	
 Total	


Double Prec. MulAdd (a*b+c)	
 0	
 0	
 1	
 1	


DD-type MulAdd (a*b+c)	
 16	
 3	
 1	
 20	
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Implementation (1/2) 
n  Implemented three BLAS subroutines 

l  AXPY (y=ax+y), GEMV (y=αAx+βy), GEMM (C=αAB+βC) 

n  Implementation is similar to “doublecomplex” kernel 
l  DD-type value is stored in “double2” type vector value 

l  DD-type operations are implemented as a device function 
with “__forceinlined__” (no function call overhead) 

l  Each thread performs one DD-type operation 

 
__device__ __forceinline__ void	


CUDDMul (double2 &a, double2 &b, double2 &c) {	



	

double2 t;	


	

CUTwoProdFMA (a.x, b.x, t.x, t.y);	


	

t.y = __dadd_rn(t.y, __dadd_rn(__dmul_rn(a.x, b.y), __dmul_rn(a.y, b.x)));	


	

CUQuickTwoSum (t.x, t.y, c.x, c.y);	



}	
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Implementation (2/2) 
n  Implementation of BLAS kernels 

l  Used blocking for shared memory (GEMV & GEMM) 

l  Experimentally determined the optimal blocking size and 
the number of threads 

K� N�

M�

K�

mat. A�

mat. B�

mat. C�

BLK�

BLK�

NT�

NT�
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Performance Evaluation 
n  Environment 

l  CPU: Xeon E5630*2 (2.53GHz, Quad-Cores, 2 sockets) 

l  GPU: Tesla C2050 (ECC-enabled) 

l  CentOS 6.0, CUDA ver. 4.0, gcc 4.4.4 (-O3) 

n  Methodology 
l  Measured the performance using DDFlops  

l  Not including the time of PCIe communications 

l  Also implemented and evaluated the CPU version 
l  Using QD library 2.3.11 for quadruple precision operations 

l  Performed in multi-threads using OpenMP on 8 cores 

l  Faster than MBLAS’s quadruple precision subroutines 
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GEMM: C=αAB+βC 
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N=2,048: 
l  Compute-bound on GPU 

(due to Byte/Flop ratio) 
l  22 GDDFlops  

 (=231 GFlops of double) 
l  86% of theoretical peak 
l  21x faster than CPUs        

    (4cores*2) 
l  13x slower than DGEMM 

v  Related work: 23 GDDFlops 
on TeslaC2050 [Nakata2011] 
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AXPY: y=αx+y 
N=10,240,000: 
l  Memory-bound on GPU 

(due to Byte/Flop ratio) 
l  4.4 GDDFlops  
l  17% of theoretical peak 
l  6x faster than CPUs        

    (4cores*2) 
l  2x slower than DAXPY 

(CUBLAS4.0)	


0


1


2


3


4


5


1024
 102400
 10240000


G
D

D
F

lo
p

s	


N	


Performance	


Xeon E5630*2


C2050




14	


GEMV: y=αAx+βy 
N=8,192: 
l  Memory-bound on GPU 

(due to Byte/Flop ratio) 
l  12 GDDFlops 
l  45% of theoretical peak 
l  15x faster than CPUs        

    (4cores*2) 
l  2x slower than DGEMV 
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Conclusion 
n  Implemented and evaluated DD-type quadruple precision 

BLAS subroutines on Tesla C2050 

n  Computation cost of DD-type quadruple precision operation is 
20x more than double precision in theory (on MulAdd) 

n  Actual execution time is only 2x more (AXPY & GEMV) ~ 13x 
more (GEMM) than double precision subroutines of CUBLAS 

n  Quadruple precision BLAS can be accelerated using GPUs 

Ø  On Tesla C2050, 6x faster (AXPY), 15x faster (GEMV), 
21x faster (GEMM) than that on Xeon E5630*2 (4*2cores) 

n  Quadruple precision linear algebra operations are suitable for 
GPU acceleration 



Triple Precision BLAS? 

16	
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Triple Precision? 
n  Why triple precision?  

l  Triple precision is clearly effective in cases where quadruple 
precision is not required but double precision is insufficient 

l  In such cases, triple precision can save memory space & 
can save wasted bandwidth  

Ø Quadruple precision AXPY & GEMV are memory-bound 
on GPUs: performance is close to 1/2 of double prec. 

Ø On memory-bound operations, triple precision can 
achieve 2/3 of double precision performance? 

n  Triple precision has never been implemented on modern 
processors such as GPUs and x86 CPUs. 
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D+S-type Triple Precision 
n  Double+Single (D+S) type triple precision value 

l  Stored one triple precision value in one double precision 
value & one single precision value (similar to DD-type) 

n  Double+Single (D+S) type triple precision operations 
l  D+S-type operations require a lot of typecastings 

between single and double precision 

l  D+S-type is slower than DD-type on Tesla C2050 (also 
GeForce series) in theory and in practice 

 

ahi	
 alo	


Significand	
  (52+23=75	
  bits)	
Exponent	
  (8	
  bits)	


D+S-type triple precision number	


Sign	
  
(1	
  bit)	


†	
  Exponent	
  is	
  8	
  bits:	
  size	
  of	
  exponent	
  depends	
  on	
  lower	
  part’s	
  exponent	
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Triple Precision BLAS on GPUs 
n  Implemented “triple precision interface” for quadruple 

precision BLAS 

l  Input/output data are D+S-type triple precision, but 
operations are DD-type quadruple precision 

l  Implementation techniques are almost the same as 
quadruple precision subroutines  

l  One triple precision value is 12-Bytes 

Ø  To fulfill the 128-Bytes memory alignment on CUDA, 
we used structure-of-arrays (SOA) layout instead of 
array-of-structures (AOS) 

Ø SOA is up to 1.3x faster than AOS 
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AXPY & GEMV 

l  Triple precision AXPY & GEMV are memory-bound, each 
execution time is approx. 1.6x and 1.7x more than double prec. 

l  On memory-bound operations, execution time of triple precision 
is close to 3/4 of quadruple precision subroutines 
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GEMM 

l  No advantage to use triple precision interface on compute-
bound operations 

l  Triple precision is a little slower than quadruple 
 (but it is the same performance as quadruple in theory…) 
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Conclusion 
n  We implemented triple precision interface for DD-type quadruple 

precision BLAS subroutines 
n  Triple prec. AXPY & GEMV are memory-bound on Tesla C2050 

l  On memory-bound operations, execution time of triple 
precision subroutine is close to 3/4 of quadruple precision 

n  Triple precision interface is available for memory-bound 
operations, in cases where quadruple precision is not required, 
but double precision is not sufficient 

n  Future work: 
l  To develop fast triple precision operation algorithm (also for 

quadruple precision) 
l  To apply triple & quadruple precision operations to actual 

scientific computation 
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Performance of GESV (AX=B) 
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l  A=N*N, B=N*1 (NRHS=1) 
l  QP is performed on CPU with 1 thread using MLAPACK (not optimized) 
l  Input matrices are initialized using “dlapackf77_dlarnv” (random) 
l  # of iteration: MP(SP+DP): 3~7, MP(DP+QD): 2 
l  Error (||b-Ax||/||A||): QP: order 1E-29~-31, MP(DP+QD): order 1E-31~-32 


