Index: zgejsv.f =================================================================== --- zgejsv.f (revision 1738) +++ zgejsv.f (working copy) @@ -27,7 +27,7 @@ * INTEGER INFO, LDA, LDU, LDV, LWORK, M, N * .. * .. Array Arguments .. -* DOUBLE COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK ) +* COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK ) * DOUBLE PRECISION SVA( N ), RWORK( LRWORK ) * INTEGER IWORK( * ) * CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV @@ -193,7 +194,7 @@ *> *> \param[in,out] A *> \verbatim -*> A is DOUBLE COMPLEX array, dimension (LDA,N) +*> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> \endverbatim *> @@ -221,7 +222,7 @@ *> *> \param[out] U *> \verbatim -*> U is DOUBLE COMPLEX array, dimension ( LDU, N ) +*> U is COMPLEX*16 array, dimension ( LDU, N ) *> If JOBU = 'U', then U contains on exit the M-by-N matrix of *> the left singular vectors. *> If JOBU = 'F', then U contains on exit the M-by-M matrix of @@ -246,7 +247,7 @@ *> *> \param[out] V *> \verbatim -*> V is DOUBLE COMPLEX array, dimension ( LDV, N ) +*> V is COMPLEX*16 array, dimension ( LDV, N ) *> If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of *> the right singular vectors; *> If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N), @@ -268,7 +269,7 @@ *> *> \param[out] CWORK *> \verbatim -*> CWORK is DOUBLE COMPLEX array, dimension at least LWORK. +*> CWORK is COMPLEX*16 array, dimension at least LWORK. *> \endverbatim *> *> \param[in] LWORK @@ -526,7 +527,7 @@ INTEGER INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N * .. * .. Array Arguments .. - DOUBLE COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), + COMPLEX*16 A( LDA, * ), U( LDU, * ), V( LDV, * ), $ CWORK( LWORK ) DOUBLE PRECISION SVA( N ), RWORK( * ) INTEGER IWORK( * ) @@ -538,11 +539,11 @@ * .. Local Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) - DOUBLE COMPLEX CZERO, CONE + COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) ) * .. * .. Local Scalars .. - DOUBLE COMPLEX CTEMP + COMPLEX*16 CTEMP DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, $ COND_OK, CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, $ MAXPRJ, SCALEM, SCONDA, SFMIN, SMALL, TEMP1,